\(\frac{\left(2003^2\cdot2013+31\cdot2004-1\right)\cdot\left(2003\cdot2008+4\right)}{200...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

\(P=\frac{\left(2003^2\cdot2013+31\cdot2004-1\right)\left(2003\cdot2008+4\right)}{2004\cdot2005\cdot2006\cdot2007\cdot2008}\)

Đặt a=2004 ta có

\(P=\frac{\left[\left(x-1\right)^2\cdot\left(a+9\right)+31\cdot a-1\right]\left[\left(a-1\right)\left(a+4\right)+4\right]}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)

\(=\frac{\left[\left(a^2-2a+1\right)\left(a+9\right)+31a-1\right]\left[\left(a^2+3a-4\right)+4\right]}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)

\(=\frac{\left(a^3+9a^2-2a^2-18a+a+9+31a-1\right)\left(a^2+3a\right)}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)

\(=\frac{\left(a^3+7a^2+14a+8\right)\left(a^2+3a\right)}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)

\(=\frac{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}=1\)

Vậy \(P=1\)

12 tháng 11 2019

Ui ko khó đâu chỉ lắm số thôi bạn ạ ~~~

Ta xét tử số: (2003^2.2013+31.2004-1)(2003.2008+4)

=[2003^2(2003+10)+(2003+1).31-1][2003(2003+5)+4]

=[2003^3+10.2003^2+31.2003+30][2003^2+5.2003+4]

Đặt 2003=a cho đỡ phức tạp

=(a^3+10a^2+31a+30)(a^2+5a+4)

Đến đây bạn phân tích đa thức thành nhân tử thôi

=(a+5)(a+2)(a+3)(a+1)(a+4)

Xét mẫu số khi đặt 2003=a

=> MS=(a+1)(a+2)(a+3)(a+4)(a+5)

=> P=1

Vậy P=1.

18 tháng 1 2016

cái câu rút gọn phân thức, bạn xem lại đề thử nhé.

 

18 tháng 1 2016

vậy bạn tính giúp bài phía dưới nha bạn 

 

6 tháng 6 2019

dùng hàng đẳng thức bình phương tổng 2 số là auto ra, cái chính là tách khéo léo để tạo được thành hàng đẳng thức nhá !!!

7 tháng 6 2019

a) \(498^2+996.502+502^2\)

\(=498^2+2.498.502+502^2\)

\(=\left(498+502\right)^2\)

\(=1000^2\)

\(=1000000\)

b) \(126^2-52.126+26^2\)

\(=126^2-2.26.126+26^2\)

\(=\left(126-26\right)^2\)

\(=100^2\)

\(=10000\)

30 tháng 6 2017

a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)

=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)

\(=\frac{4x}{\left(x+1\right)^2}\)=VP

b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)

=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)

=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP

c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)

\(=x+y=\)VP

Vậy các đẳng thức được chứng minh

=

30 tháng 6 2017

C là xy mà ko phải x+y

31 tháng 3 2020

a, Ta có : \(\frac{x+1}{2}+\frac{x-2}{4}=1-\frac{2\left(x-1\right)}{3}\)

=> \(\frac{6\left(x+1\right)}{12}+\frac{3\left(x-2\right)}{12}=\frac{12}{12}-\frac{8\left(x-1\right)}{12}\)

=> \(6\left(x+1\right)+3\left(x-2\right)=12-8\left(x-1\right)\)

=> \(6x+6+3x-6=12-8x+8\)

=> \(17x=20\)

=> \(x=\frac{20}{17}\)

b, Ta có : \(\frac{5x-1}{6}+x=\frac{6-x}{4}\)

=> \(\frac{5x-1+6x}{6}=\frac{6-x}{4}\)

=> \(4\left(11x-1\right)=6\left(6-x\right)\)

=> \(44x-4-36+6x=0\)

=> \(\)\(50x=40\)

=> \(x=\frac{4}{5}\)

c, Ta có : \(\frac{5\left(1-2x\right)}{3}+\frac{x}{2}=\frac{3\left(x-5\right)}{4}-2\)

=> \(\frac{20\left(1-2x\right)}{12}+\frac{6x}{12}=\frac{9\left(x-5\right)}{12}-\frac{24}{12}\)

=> \(20\left(1-2x\right)+6x=9\left(x-5\right)-24\)

=> \(20-40x+6x-9x+45+24=0\)

=> \(43x=89\)

=> \(x=\frac{89}{43}\)

22 tháng 7 2018

Nhân ra thôi chứ sao?

22 tháng 7 2018

thì bạn nhân đi !

31 tháng 5 2017

câu 2 :

 \(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)

\(\Rightarrow x+2009=0\)

\(\Rightarrow x=-2009\)

22 tháng 3 2019

@Akai Haruma

NV
28 tháng 3 2019

Do \(\left|x\right|\ge2;\left|y\right|\ge2\Rightarrow xy\ne0\)

Ta luôn có \(\left\{{}\begin{matrix}\frac{1}{x}\le\frac{1}{\left|x\right|}\le\frac{1}{2}\\\frac{1}{y}\le\frac{1}{\left|y\right|}\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{x}+\frac{1}{y}\le\frac{1}{2}+\frac{1}{2}=1\)

\(\frac{xy}{x+y}=\frac{2003}{2004}\Leftrightarrow\frac{x+y}{xy}=\frac{2004}{2003}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{2004}{2003}\)

Ta có \(\frac{2004}{2003}>1\)\(\frac{1}{x}+\frac{1}{y}\le1\Rightarrow VT< VP\Rightarrow\) phương trình vô nghiệm