Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

a) đk: \(x\ge0;x\ne9\)
Ta có:
\(B=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]\div\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+3\right)\sqrt{x}-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(B=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(B=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(B=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=\frac{3\sqrt{x}-9}{\sqrt{x}+3}\)
b) \(B< -1\Leftrightarrow\frac{3\sqrt{x}-9}{\sqrt{x}+3}+1< 0\)
\(\Leftrightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\) , mà \(\sqrt{x}+3\ge3>0\left(\forall x\right)\)
=> \(4\sqrt{x}-6< 0\)
\(\Leftrightarrow4\sqrt{x}< 6\)
\(\Rightarrow\sqrt{x}< \frac{3}{2}\)
\(\Rightarrow x< \frac{9}{4}\)
Vậy \(0\le x< \frac{9}{4}\)
c) Ta có: \(B=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=\frac{3\left(\sqrt{x}+3\right)-18}{\sqrt{x}+3}=3-\frac{18}{\sqrt{x}+3}\)
Vì \(\sqrt{x}+3\ge3\Rightarrow\frac{18}{\sqrt{x}+3}\le6\)
\(\Leftrightarrow3-\frac{18}{\sqrt{x}+3}\ge-3\)
\(\Rightarrow A\ge-3\)
Dấu "=" xảy ra khi: \(\sqrt{x}+3=3\Rightarrow x=0\)
Vậy \(Min_A=-3\Leftrightarrow x=0\)

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(=\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right)\div\frac{1}{2\left(\sqrt{x}-2\right)}\)
\(=\left(\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right)\times\frac{2\left(\sqrt{x}-2\right)}{1}\)
\(=\left(\frac{x-4-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right)\times\frac{2\left(\sqrt{x}-2\right)}{1}\)
\(=\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\times\frac{2\left(\sqrt{x}-2\right)}{1}\)
\(=\frac{5\times2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{10}{\sqrt{x}-3}\)
\(\left(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\right):\frac{1}{2\sqrt{x}-4}\)
\(=\left(\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right):\frac{1}{2\sqrt{x}-4}\)
\(=\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\frac{2\left(\sqrt{x}-2\right)}{1}\)
\(=\frac{10\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{10}{\sqrt{x}-3}\)