Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,5-\frac{2}{3}.\frac{3}{4}+3\frac{1}{6}\)
\(=\frac{5}{2}-\frac{2}{3}.\frac{3}{4}+\frac{19}{6}\)
\(=\frac{3}{4}.\frac{10}{3}-\frac{2}{3}.\frac{3}{4}-\frac{3}{4}.\frac{38}{9}\)
\(=\frac{3}{4}.\left(\frac{10}{3}-\frac{2}{3}-\frac{38}{9}\right)\)
\(=\frac{3}{4}.\left(\frac{30}{9}-\frac{6}{9}-\frac{38}{9}\right)\)
\(=\frac{3}{4}.\frac{-14}{9}\)
\(=-\frac{7}{6}\)
\(2,5-\frac{2}{3}\times\frac{3}{4}+3\frac{1}{6}\)
\(=\frac{5}{2}-\frac{1}{2}+3+\frac{1}{6}\)
\(=2+3+\frac{1}{6}\)
\(=5\frac{1}{6}\)
Chúc bn học tốt !!!
a)\(\frac{2}{3}+\frac{3}{4}+\frac{5}{6}\)
\(=\frac{8+9+10}{12}\)
\(=\frac{27}{12}=\frac{9}{4}\)
b)\(\frac{15}{8}-\frac{7}{12}+\frac{5}{6}\)
\(=\frac{45-14+20}{24}\)
\(=\frac{51}{24}=\frac{17}{8}\)
2)
a)\(\frac{2}{5}+\frac{7}{13}+\frac{3}{5}+\frac{1}{7}\)
\(=\frac{2}{5}+\frac{3}{5}+\frac{7}{13}+\frac{1}{7}\)
\(=1+\frac{7}{13}+\frac{1}{7}\)
\(=\frac{20}{13}+\frac{1}{7}\)
\(=\frac{153}{91}\)
Tí tớ trả lời tiếp
a. \(1\frac{5}{7}\)-\(\frac{9}{7}\)*\(\frac{16}{9}\)
=\(\frac{12}{7}\)-\(\frac{16}{7}\)
=\(\frac{-4}{7}\)
b. \(\frac{-5}{8}\):\(\frac{1}{4}\)-\(\frac{6}{13}\)*4+\(\frac{3}{8}\)
=\(\frac{-5}{8}\cdot\)4-\(\frac{6}{13}\)*4+\(\frac{3}{8}\)
=4*(\(\frac{-5}{8}\)-\(\frac{6}{13}\))+\(\frac{3}{8}\)
=4*\(\frac{-113}{104}\)+\(\frac{3}{8}\)
=\(\frac{-113}{26}\)+\(\frac{3}{8}\)
=\(\frac{-413}{104}\)
c.( \(\frac{3}{8}\)+\(\frac{-1}{4}\)-\(\frac{5}{12}\)):\(\frac{1}{3}\)
=\(\frac{-7}{24}\)*3
=\(\frac{-7}{8}\)
Học tốt
Thực ra là tìm x nha bạn, không phải tính đâu
\(|\frac{3}{4}x-\frac{5}{8}|=\frac{2}{3}\)
(=)\(\orbr{\begin{cases}\frac{3}{4}x-\frac{5}{8}=\frac{2}{3}\\\frac{3}{4}x-\frac{5}{8}=\frac{-2}{3}\end{cases}}\)
(=)\(\orbr{\begin{cases}\frac{3}{4}x=\frac{2}{3}+\frac{5}{8}\\\frac{3}{4}x=\frac{-2}{3}+\frac{5}{8}\end{cases}}\)
(=)\(\orbr{\begin{cases}\frac{3}{4}x=\frac{31}{24}\\\frac{3}{4}x=\frac{-1}{24}\end{cases}}\)
(=)\(\orbr{\begin{cases}x=\frac{31}{24}:\frac{3}{4}\\x=\frac{-1}{24}:\frac{3}{4}\end{cases}}\)
(=)\(\orbr{\begin{cases}x=\frac{31}{18}\\x=\frac{-1}{18}\end{cases}}\)
Vậy \(x\in\left\{\frac{31}{18};\frac{-1}{18}\right\}\)