Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}\)
\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A>\dfrac{1}{2}-\dfrac{1}{100}\)
\(A>\dfrac{49}{100}\)
Ta lại có:
\(\dfrac{49}{100}=\dfrac{96775}{197500}\)
\(\dfrac{304}{1975}=\dfrac{30400}{197500}\)
\(\Rightarrow\dfrac{49}{100}>\dfrac{304}{1975}\)
Mà \(A>\dfrac{49}{100}\)
\(\Rightarrow A>B\)
\(\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+....+\left(2^2+2\right)\)
\(=2^9.\left(2+1\right)+2^7.\left(2+1\right)+...+2.\left(2+1\right)\)
\(=2^9.3+2^7.3+...+2.3\)
\(=3.\left(2^9+2^7+...+2\right)⋮3\)
P/S: mấy bài khác tương tự
\(a,2^{10}+2^9+2^8+...+2\)
\(=\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+...+\left(2^2+2\right)\)
\(=2^9\left(2+1\right)+2^7\left(2+1\right)+...+2\left(2+1\right)\)
\(=2^9.3+2^7.3+...+2.3\)
\(=3\left(2^9+2^7+...+2\right)⋮3\left(đpcm\right)\)
\(b,1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2.4+...+3^{98}.4\)
\(=4\left(1+3^2+...+3^{98}\right)⋮4\left(đpcm\right)\)
\(c,1+5+5^2+5^3+...+5^{1975}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{1974}+5^{1975}\right)\)
\(=6+5^2\left(1+5\right)+...+5^{1974}\left(1+5\right)\)
\(=6+5^2.6+...+5^{1974}.6\)
\(=6\left(1+5^2+...+5^{1974}\right)⋮6\left(đpcm\right)\)
\(A=\left(2^2+2^3+2^4+2^5 \right).\left(3^2+3^3+3^4\right)\left(2^4-4^2\right)\)
\(=\left(2^2+2^3+2^4+2^5\right).\left(3^2+3^3+3^4\right).\left(16-16\right)\)
\(=0\)
a, \(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(A=2^{2011}-1\)
b, \(4C=4^2+4^3+...+4^{n+1}\)
\(4C-C=\left(4^2+4^3+...+4^{n+1}\right)-\left(4+4^2+...+4^n\right)\)
\(3C=4^{n+1}-4\)
\(C=\frac{4^{n+1}-4}{3}\)
a) A = 1 + 2 + 22 + ... + 22010
=> 2A = 2 + 22 + 23 + ... + 22011
Lấy 2A - A = (2 + 22 + 23 + ... + 22011) - (1 + 2 + 22 + ... + 22010)
A = 2 + 22 + 23 + ... + 22011 - 1 - 2 - 22 - ... - 22010
= 22011 - 1
b) C = 4 + 42 + 43 +... + 4n
=> 4C = 42 + 43 + 44 + ... + 4n + 1
Lấy 4C - C = (42 + 43 + 44 + ... + 4n + 1) - ( 4 + 42 + 43 +... + 4n)
3C = 4n + 1 - 4
C =(4n + 1 - 4) : 3
1/A=1.21.22.23.24.25 câu 2 làm tương tự
A.2=2.22.23.24.25.26
A.2-A=(2.22.23.24.25.2 mũ 6)-(1.21.22.23.24.25)
A=26-1
3 A=1+3+32+33+...37
3.A=3+32+33+34...+38
2A=38-1
A=(38-1):2
------S = 1 + 2 + 2^2 + 2^3 +......... 2^63
=> 2S = 2 x (1 + 2 + 2^2 + 2^3 + ........... + 2^63
=> 2S = 2 + 2^2 + 2^3 +............+ 2^63 + 2^64
------S = 1 + 2 + 2^2 + 2^3 +........+ 2^63
S = 2^64 - 1
P = 22 + 23 + 24 + ... + 21975
2P = 2 x ( 22 + 23 + 24 + ... + 21975 )
2P = 23 + 24 + 25 + .... + 21975 + 21976
2P - P = ( 23 + 24 + 25 + ... + 21975 + 21976 ) - ( 22 + 23 + 24 + 25 + .... + 21975 )
P= 21976 - 22