\(P=2^2+2^3+2^4+....+2^{1975}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

------S = 1 + 2 + 2^2 + 2^3 +......... 2^63
=> 2S = 2 x (1 + 2 + 2^2 + 2^3 + ........... + 2^63
=> 2S = 2 + 2^2 + 2^3 +............+ 2^63 + 2^64
------S = 1 + 2 + 2^2 + 2^3 +........+ 2^63
S = 2^64 - 1

7 tháng 1 2017

P = 22 + 23 + 24 + ... + 21975

2P = 2 x ( 22 + 23 + 24 + ... + 21975 )

2P = 23 + 24 + 25 + .... + 21975 + 21976

2P - P = ( 23 + 24 + 25 + ... + 21975 + 21976 ) - ( 22 + 23 + 24 + 25 + .... + 21975 )

P= 21976 - 22

29 tháng 8 2018

Ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}\)

\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A>\dfrac{1}{2}-\dfrac{1}{100}\)

\(A>\dfrac{49}{100}\)

Ta lại có:

\(\dfrac{49}{100}=\dfrac{96775}{197500}\)

\(\dfrac{304}{1975}=\dfrac{30400}{197500}\)

\(\Rightarrow\dfrac{49}{100}>\dfrac{304}{1975}\)

\(A>\dfrac{49}{100}\)

\(\Rightarrow A>B\)

13 tháng 10 2018

\(\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+....+\left(2^2+2\right)\)

\(=2^9.\left(2+1\right)+2^7.\left(2+1\right)+...+2.\left(2+1\right)\)

\(=2^9.3+2^7.3+...+2.3\)

\(=3.\left(2^9+2^7+...+2\right)⋮3\)

P/S: mấy bài khác tương tự

13 tháng 10 2018

\(a,2^{10}+2^9+2^8+...+2\)

\(=\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+...+\left(2^2+2\right)\)

\(=2^9\left(2+1\right)+2^7\left(2+1\right)+...+2\left(2+1\right)\)

\(=2^9.3+2^7.3+...+2.3\)

\(=3\left(2^9+2^7+...+2\right)⋮3\left(đpcm\right)\)

\(b,1+3+3^2+3^3+...+3^{99}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)

\(=4+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)

\(=4+3^2.4+...+3^{98}.4\)

\(=4\left(1+3^2+...+3^{98}\right)⋮4\left(đpcm\right)\)

\(c,1+5+5^2+5^3+...+5^{1975}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{1974}+5^{1975}\right)\)

\(=6+5^2\left(1+5\right)+...+5^{1974}\left(1+5\right)\)

\(=6+5^2.6+...+5^{1974}.6\)

\(=6\left(1+5^2+...+5^{1974}\right)⋮6\left(đpcm\right)\)

18 tháng 9 2018

Ngoặc cuối cùng bằng 0 suy ra A=0

\(A=\left(2^2+2^3+2^4+2^5 \right).\left(3^2+3^3+3^4\right)\left(2^4-4^2\right)\) 

\(=\left(2^2+2^3+2^4+2^5\right).\left(3^2+3^3+3^4\right).\left(16-16\right)\) 

\(=0\)

a, \(2A=2+2^2+2^3+...+2^{2011}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)

\(A=2^{2011}-1\)

b, \(4C=4^2+4^3+...+4^{n+1}\)

\(4C-C=\left(4^2+4^3+...+4^{n+1}\right)-\left(4+4^2+...+4^n\right)\)

\(3C=4^{n+1}-4\)

\(C=\frac{4^{n+1}-4}{3}\)

5 tháng 7 2019

a) A = 1 + 2 + 22 + ... + 22010

=> 2A = 2 + 22 + 23 + ... + 22011

Lấy 2A - A = (2 + 22 + 23 + ... + 22011) - (1 + 2 + 22 + ... + 22010)

              A = 2 + 22 + 23 + ... + 22011 - 1 - 2 - 22 - ... - 22010

                 = 22011 - 1

b) C = 4 + 42 + 43 +... + 4n

=> 4C = 42 + 43 + 44 + ... + 4n + 1

Lấy 4C - C = (42 + 43 + 44 + ... + 4n + 1) - ( 4 + 42 + 43 +... + 4n)

            3C  = 4n + 1 - 4

              C  =(4n + 1 - 4) : 3

1 tháng 2 2019

1/A=1.21.22.23.24.25                                                               câu 2 làm tương tự                                                            

A.2=2.22.23.24.25.26                                

A.2-A=(2.22.23.24.25.2 mũ 6)-(1.21.22.23.24.25)

A=26-1

3 A=1+3+32+33+...37

3.A=3+32+33+34...+38

2A=38-1

A=(38-1):2