Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\)
\(=1+\dfrac{1}{2}\left(2\cdot3:2\right)+\dfrac{1}{3}\cdot\left(3\cdot4:2\right)+...+\dfrac{1}{16}\left(16\cdot17:2\right)\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{17}{2}\)
\(=\dfrac{2+3+4+...+17}{2}=\dfrac{152}{2}=76\)
\(M=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\)
\(M=1+\dfrac{1}{2}.3+\dfrac{1}{3}.6+...+\dfrac{1}{16}.136\)
\(M=1+\dfrac{1}{2}.\dfrac{2.3}{2}+\dfrac{1}{3}.\dfrac{3.4}{2}+...+\dfrac{1}{16}.\dfrac{16.17}{2}\)
\(M=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{17}{2}=\dfrac{1}{2}\left(2+3+4+...+17\right)\)
\(M=\dfrac{1}{2}.\left(\dfrac{17.18}{2}-1\right)=\dfrac{1}{2}.152=76\)
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
a: \(=\dfrac{-3}{4}\left(31+\dfrac{11}{23}+8+\dfrac{12}{23}\right)=\dfrac{-3}{4}\cdot40=-30\)
b: \(=\left(\dfrac{7}{3}+\dfrac{7}{2}\right):\left(-\dfrac{25}{6}+\dfrac{22}{7}\right)+\dfrac{15}{2}\)
\(=\dfrac{35}{6}:\dfrac{-175+132}{42}+\dfrac{15}{2}\)
\(=\dfrac{35}{6}\cdot\dfrac{42}{-43}+\dfrac{15}{2}\)
\(=\dfrac{35\cdot7}{-43}+\dfrac{15}{2}\)
\(=\dfrac{-70\cdot7+15\cdot43}{86}=\dfrac{155}{86}\)
c: \(=\dfrac{-7}{5}\left(4+\dfrac{5}{9}+5+\dfrac{4}{9}\right)=\dfrac{-7}{5}\cdot10=-14\)
d: \(=4+\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}\cdot\dfrac{64}{125}\cdot\dfrac{-8}{27}\right)\)
\(=\dfrac{89}{16}+25\cdot\dfrac{-32}{375}\)
\(=\dfrac{89}{16}-\dfrac{32}{15}=\dfrac{823}{240}\)
e: \(=\dfrac{2}{3}-4\cdot\left(\dfrac{2}{4}+\dfrac{3}{4}\right)=\dfrac{2}{3}-5=-\dfrac{13}{3}\)
e)\(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)+28\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)\)
=\(\left(16\dfrac{2}{7}+28\dfrac{2}{7}\right):\left(-\dfrac{3}{5}\right)\)
=\(\dfrac{312}{7}\)\(:\left(-\dfrac{3}{5}\right)\)
=\(-\dfrac{516}{7}\)
a)\(\dfrac{7}{8}.\left(\dfrac{2}{12}+\dfrac{4}{10}\right)\)
=\(\dfrac{7}{8}.\left(\dfrac{1}{6}+\dfrac{2}{5}\right)\)
=\(\dfrac{7}{8}.\)\(\dfrac{17}{30}\)
=\(\dfrac{119}{240}\)
\(B=0,25+3,5-\left(\dfrac{1}{8}-\dfrac{2}{5}+1\dfrac{1}{4}\right)\)
\(=\dfrac{17}{20}-\left(\dfrac{39}{40}\right)\)
\(=\dfrac{-1}{8}\)
\(C=\dfrac{2}{3}-\left(\dfrac{-1}{4}\right)+\dfrac{3}{5}-\dfrac{7}{45}-\left(\dfrac{-5}{9}\right)+\dfrac{1}{12}+\dfrac{1}{35}\)
\(=\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{12}+\dfrac{1}{35}\)
\(=\dfrac{71}{35}\)
\(D=\left(5-\dfrac{3}{4}+\dfrac{1}{5}\right)-\left(6+\dfrac{7}{4}-\dfrac{8}{5}\right)-\left(2-\dfrac{5}{7}+\dfrac{16}{5}\right)\)
\(=5-\dfrac{3}{4}+\dfrac{1}{5}-6-\dfrac{7}{4}+\dfrac{8}{5}-2+\dfrac{5}{7}-\dfrac{16}{5}\)
\(=\left(5-6-2\right)+\left(\dfrac{-3}{4}-\dfrac{7}{4}\right)+\left(\dfrac{1}{5}+\dfrac{8}{5}-\dfrac{16}{5}\right)+\dfrac{5}{7}\)
\(=\left(-3\right)+\left(\dfrac{-5}{2}\right)+\left(\dfrac{-7}{5}\right)+\dfrac{5}{7}\)
\(=\dfrac{-433}{70}\)
\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\\ P=1+\dfrac{1}{2}.\dfrac{2.3}{2}+\dfrac{1}{3}.\dfrac{3.4}{2}+...+\dfrac{1}{16}.\dfrac{16.17}{2}\\ P=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{17}{2}\\ P=\dfrac{1}{2}\left(2+3+4+...+17\right)\\ P=\dfrac{1}{2}\left(\dfrac{17.18}{2}-1\right)\\ P=\dfrac{1}{2}.152=76\)
\(P=\dfrac{1}{2}.\left(\dfrac{19.16}{2}\right)\)chớ