\(\left\{{}\begin{matrix}P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

HELP Toshiro Kiyoshi, Nguyễn Thanh Hằng, Nguyễn Huy Tú, Phương An, Hồng Phúc Nguyễn,....

16 tháng 8 2017

Ta có:

\(\left\{{}\begin{matrix}P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2+2\left(ab+bc+ac\right)\\Q=\left(a+b+c+1\right)^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P=a^2+a+1+b^2+b+1+c^2+c+1+2ab+2bc+2ac\\Q=a^2+b^2+c^2+1+2ab+2ac+2a+2bc+2b+2c\end{matrix}\right.\)

\(\Rightarrow P-Q=\left(a^2+a+1+b^2+b+1+c^2+c+1+2ab+2bc+2ac\right)\left(a^2+b^2+c^2+1+2ab+2ac+2a+2bc+2b+2c\right)\)

\(\Rightarrow P-Q=a^2+b^2+c^2+a+b+c+3+2ab+2bc+2ac-a^2-b^2-c^2-1-2ab-2ac-2a-2bc-2b-2c\)

\(\Rightarrow P-Q=-a-b-c+2=-\left(a+b+c-2\right)\)

Vậy..............

Chúc bạn học tốt!!!

27 tháng 9 2017

\(\left(x+1\right)\left(y+1\right)=8\\ \Rightarrow xy+x+y+1=8\\ \Rightarrow xy+x+y=7\)

\(x\left(x+1\right)+y\left(y+1\right)+xy=17\\ \Rightarrow x^2+y^2+x+y+xy=17\\ \Rightarrow x^2+y^2=10\)

Đề: tìm x biết : \(2.\left|2-x\right|+3.\left|x+1\right|-x+1=2x\) giải •nếu \(-1>x\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=-x-1\) •nếu \(-1\le x< 2\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=x+1\) •nếu\(x\ge2\) thì: \(\left|2-x\right|=x-2\\ \left|x+1\right|=x+1\) ◘ từ 3 ĐK trên, ta có: \(\left[{}\begin{matrix}2.\left(2-x\right)+3.\left(-x-1\right)-x+1=2x\left(với\:-1>x\right)\\2.\left(2-x\right)+3.\left(x+1\right)-x+1=2x\left(với\:-1\le x<...
Đọc tiếp

Đề: tìm x biết : \(2.\left|2-x\right|+3.\left|x+1\right|-x+1=2x\)

giải

•nếu \(-1>x\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=-x-1\)

•nếu \(-1\le x< 2\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=x+1\)

•nếu\(x\ge2\) thì: \(\left|2-x\right|=x-2\\ \left|x+1\right|=x+1\)

◘ từ 3 ĐK trên, ta có:

\(\left[{}\begin{matrix}2.\left(2-x\right)+3.\left(-x-1\right)-x+1=2x\left(với\:-1>x\right)\\2.\left(2-x\right)+3.\left(x+1\right)-x+1=2x\left(với\:-1\le x< 2\right)\\2.\left(x-2\right)+3.\left(x+1\right)-x+1=2x\left(với\:x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4-2x-3x-3-x+1=2x\\4-2x+3x+3-x+1=2x\\2x-4+3x+3-x+1=2x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-8x=-2\\-2x=-8\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\left(loại\right)\\x=4\left(loại\right)\\x=0\left(loại\right)\end{matrix}\right.\)

vậy phương trình đã cho vô nghiệm.

P/S: giải dùm cho 1 bạn nhờ, đừng ném đa hay gạch j nhé !!!

My name is ???

1

My name is ???

27 tháng 9 2017

a)\(\hept{\begin{cases}2x-3y=1\\4x-5y=2\end{cases}\Leftrightarrow\hept{\begin{cases}4x-6y=2\\4x-5y=2\end{cases}}}\)

Trừ 2 vế lại ta được 

\(4x-4x-6y+5y=0\Leftrightarrow-y=0\Leftrightarrow y=0\)

\(\Rightarrow x=\frac{1}{2}\)

Câu 1: 

a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

\(=a^3+b^3\)

b: \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)TH1: Với a+b+c=0\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)Ta...
Đọc tiếp

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

TH1: Với a+b+c=0\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Ta có:\(S=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)

\(=-1\)

TH2: \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c\)

Ta có: \(S=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=2.2.2=8\)

Vậy .... ( ko bít ghi kiểu gì luôn -.- )

0