\(\frac{1}{1x5}+\frac{1}{5x10}+\frac{1}{10x15}+....+\frac{1}{2005x2010}\)=?...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

\(N=\frac{1}{1.5}+\frac{1}{5.10}+...+\frac{1}{2005.2010}=\frac{1}{5}\left(\frac{5}{1.5}+\frac{5}{5.10}+...+\frac{5}{2005.2010}\right)=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)

\(N=\frac{1}{5}.\frac{2009}{2010}=\frac{2009}{2010}\)

6 tháng 8 2015

Bài bạn Mạnh Chưa đúng. bạn  Hạnh kiểm tra lại nhé

15 tháng 8 2016

Đặt A = 1/5x10 + 1/10x15 + 1/15x20 + 1/20x25 + ... + 1/95x100

A x 5 = 5/5x10 + 5/10x15 + 5/15x20 + 5/20x25 + ... + 5/95x100

A x 5 = 1/5 - 1/10 + 1/10 - 1/15 + 1/15 - 1/20 + 1/20 - 1/25 + ... + 1/95 - 1/100

A x 5 = 1/5 - 1/100

A x 5 = 19/100

A = 19/100 : 5

A = 19/100 x 1/5 

A = 19/500

 Vậy A= 19/500

14 tháng 8 2016

chỉ cần phân k nha bạn 

kết bạn vs mình nói cho

4 tháng 5 2018

\(A=\frac{1}{2.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(A=\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)

\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)

                          ( gạch bỏ các phân số giống nhau)

\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(A=\frac{1}{4}+\frac{2}{9}\)

\(A=\frac{17}{36}\)

phần b, c bn lm tương tự như phần a nha

27 tháng 4 2017

A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102

A=1-1/102=102/102-1/102=101/102

ý b thì chờ mình tí tìm cách lập luận đã nhé

27 tháng 4 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)

\(A=1-\frac{1}{102}\)

\(A=\frac{101}{102}\)

19 tháng 5 2019

#)Trả lời :

 \(A=\frac{\left(140+70+42+28+20+15\right)}{420}\)

\(A=\frac{315}{420}=\frac{\left(315:105\right)}{\left(420:105\right)}=\frac{3}{4}\)

Vậy : \(A=\frac{3}{4}\)

         #~Will~be~Pens~#

19 tháng 5 2019

Tính nhanh mà cậu

4 tháng 7 2020

giúp mình với

22 tháng 5 2017

quá dễ dàng

1. 

\(A=\frac{1}{199}+\frac{2}{198}+...+\frac{199}{1}\)

cộng 1 vào mỗi  phân số trong 198 phân số đầu, trừ phân số cuối đi 198 ta được :

\(A=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{199}{1}-198\right)\)

\(A=\frac{200}{199}+\frac{200}{198}+...+1\)

\(A=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{200}\)

đưa phân số cuối lên đầu ta được :

\(A=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)

\(A=200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}=200\)

2. 

\(A=\frac{1}{1.400}+\frac{1}{2.401}+\frac{1}{3.402}+...+\frac{1}{101.500}\)

\(A=\frac{1}{400}.\left(1-\frac{1}{400}\right)+\frac{1}{400}.\left(\frac{1}{2}-\frac{1}{401}\right)+\frac{1}{400}.\left(\frac{1}{3}-\frac{1}{402}\right)+...+\frac{1}{400}.\left(\frac{1}{101}-\frac{1}{500}\right)\)

\(A=\frac{1}{400}.\left(1-\frac{1}{400}+\frac{1}{2}-\frac{1}{401}+\frac{1}{3}-\frac{1}{402}+...+\frac{1}{101}-\frac{1}{500}\right)\)

\(A=\frac{1}{400}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{400}-\frac{1}{401}-\frac{1}{402}-...-\frac{1}{500}\right)\)

\(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{399.500}\)

\(B=\frac{1}{101}.\left(1-\frac{1}{102}\right)+\frac{1}{101}.\left(\frac{1}{2}-\frac{1}{103}\right)+\frac{1}{101}.\left(\frac{1}{3}-\frac{1}{104}\right)+...+\frac{1}{101}.\left(\frac{1}{399}-\frac{1}{500}\right)\)

\(B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+\frac{1}{3}-\frac{1}{104}+...+\frac{1}{399}-\frac{1}{500}\right)\)

\(B=\frac{1}{101}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{399}-\frac{1}{102}-\frac{1}{103}-\frac{1}{104}-...-\frac{1}{500}\right)\)

\(B=\frac{1}{101}.\left(1+\frac{1}{2}+...+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{399}-\frac{1}{102}-...-\frac{1}{399}-\frac{1}{400}-...-\frac{1}{500}\right)\)

\(B=\frac{1}{101}.\left(1+\frac{1}{2}+...+\frac{1}{101}-\frac{1}{400}-...-\frac{1}{500}\right)\)

Ta thấy vế trong ngoặc của hai biểu thức A và B giống nhau, do đó :

\(\frac{A}{B}=\frac{\left(\frac{1}{400}\right)}{\left(\frac{1}{101}\right)}=\frac{101}{400}\)

6 tháng 5 2018

Bài 1

a) \(P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

b) \(S=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{33}{99}-\frac{1}{99}\)

\(=\frac{32}{99}\)

c)\(Q=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}\)

\(=\frac{10}{20}-\frac{1}{20}\)

\(=\frac{9}{20}\)

Tk mình nha!!

7 tháng 5 2018

Câu 2:

\(P=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)

\(=\left(\frac{2}{2}+\frac{1}{2}\right).\left(\frac{3}{3}+\frac{1}{3}\right).\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{99}{99}+\frac{1}{99}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)

\(=\frac{3\cdot4\cdot5...100}{2.3.4...99}\)

\(=\frac{3\cdot100}{2}\)

\(=\frac{300}{2}=150\)

23 tháng 6 2017

\(A=\frac{8}{9}\cdot\frac{15}{16}\cdot\frac{24}{25}\cdot...\cdot\frac{360}{361}\cdot\frac{399}{400}\)

\(A=\frac{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot18\cdot20\cdot19\cdot21}{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot19\cdot19\cdot20\cdot20}\)

\(A=\frac{2\cdot21}{3\cdot20}\)

\(A=\frac{7}{10}\)

\(B=\frac{9}{8}\cdot\frac{16}{15}\cdot\frac{25}{24}\cdot...\cdot\frac{441}{440}\cdot\frac{484}{483}\)

\(B=\frac{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot21\cdot21\cdot22\cdot22}{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot20\cdot22\cdot21\cdot23}\)

\(B=\frac{3\cdot22}{2\cdot23}=\frac{33}{23}\)

\(C=\frac{17}{23}.\left(\frac{7}{61}+\frac{28}{61}+\frac{26}{61}\right)\)

\(C=\frac{17}{23}\cdot1=\frac{17}{23}\)

29 tháng 8 2017

ê viết kiểu j z

k cho t ik