\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

Ta có:

\(\frac{x}{2013}\)-\(\frac{1}{10}\)-\(\frac{1}{15}\)-\(\frac{1}{21}\)-...-\(\frac{1}{120}\)=\(\frac{5}{8}\)

=>\(\frac{x}{2013}\)- (\(\frac{2}{20}\)+\(\frac{2}{30}\)+\(\frac{2}{42}\)+...+\(\frac{2}{240}\)) = \(\frac{5}{8}\)

=>\(\frac{x}{2013}\)- 2.(\(\frac{1}{4.5}\)+\(\frac{1}{5.6}\)+...+\(\frac{1}{15.16}\)) = \(\frac{5}{8}\)

=>\(\frac{x}{2013}\)- 2.(\(\frac{1}{4}\)-\(\frac{1}{10}\)) = \(\frac{5}{8}\)

=>\(\frac{x}{2013}\)- 2.\(\frac{3}{10}\)\(\frac{5}{8}\)

=>\(\frac{x}{2013}\)\(\frac{5}{8}\)+\(\frac{6}{10}\)= 1

=> \(x=2013\)

Vậy \(x=2013\)

18 tháng 8 2017

2013 nha

12 tháng 11 2019

Ta có:

\(\Rightarrow\frac{x}{2008}=1\)

\(\Rightarrow x=1.2008\)

\(\Rightarrow x=2008\)

Vậy \(x=2008.\)

Chúc bạn học tốt!

14 tháng 2 2017

\(\Rightarrow\frac{x}{2013}-\left(\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\right)=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2013}-2\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\right)=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2013}-2\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2013}-\frac{3}{8}=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2013}=1\)

\(\Rightarrow x=2013\)

9 tháng 3 2016

Ko đánh đc phân số nên cho kết quả lun nha: 2013

6 tháng 7

Bài 1:

A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + (\(\frac45\) - \(\frac{3}{17}\) + \(\frac13\)) - \(\frac17\) + (- \(\frac{14}{30}\))

A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + \(\frac45\) - \(\frac{3}{17}\) + \(\frac13\) - \(\frac17\) - \(\frac{14}{30}\)

A = (\(\frac15\) + \(\frac45\)) + (\(\frac{3}{17}\) - \(\frac{3}{17}\)) - (\(\frac43-\frac13\)) - \(\frac{30}{210}\) - \(\frac{98}{210}\)

A = 1 + 0 - 1 - (\(\frac{30}{210}+\frac{98}{210}\))

A = 1 - 1 - \(\frac{228}{210}\)

A = 0 - \(\frac{128}{210}\)

A = - \(\frac{64}{105}\)

6 tháng 7

Bài 2:

B= (\(\frac58\) - \(\frac{4}{12}\) + \(\frac32\)) - (\(\frac58\) + \(\frac{9}{13}\)) - (\(\frac{-3}{2}\)) + \(\frac{7}{-15}\)

B = \(\frac58\) - \(\frac{4}{12}\) + \(\frac32\) - \(\frac58\) - \(\frac{9}{13}\) + \(\frac32\) - \(\frac{7}{15}\)

B = (\(\frac58\) - \(\frac58\)) + (\(\frac32\) + \(\frac32\)) - (\(\frac13\) + \(\frac{9}{13}\) + \(\frac{7}{15}\))

B = 0 + 3 - (\(\frac{65}{195}\) + \(\frac{135}{195}\) + \(\frac{91}{195}\))

B = 3 - (\(\frac{200}{195}\) + \(\frac{91}{195}\))

B = 3 - \(\frac{97}{65}\)

B = \(\frac{195}{65}\) - \(\frac{97}{65}\)

B = \(\frac{98}{65}\)

Ta có: \(G=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)