Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề nha :
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2015\cdot2017}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\frac{2016}{2017}=\frac{1008}{2017}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2016.2017}\)
\(=\frac{1}{2}\left[\left[\frac{1}{1}-\frac{1}{3}\right]+\left[\frac{1}{3}-\frac{1}{5}\right]+...+\left[\frac{1}{2016}-\frac{1}{2017}\right]\right]\)
= \(=\frac{1}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2016}-\frac{1}{2017}\right]\)
\(=\frac{1}{2}.\left[1-\frac{1}{2017}\right]\)
= 1/2. 2016 / 2017 = 1008/2017
AI THẤY ĐÚNG ỦNG HỘ NHA
\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}\)
\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}\cdot\frac{10}{39}=\frac{5}{39}\)
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{1.13}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}.\frac{10}{39}=\frac{5}{39}\)
\(2C=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{38.39}\)
\(C=\frac{617}{1482}\)
\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3D-D=1-\frac{1}{3^8}\)
\(D=\frac{1}{2}-\frac{1}{2.3^8}\)
Ta có:\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{38.39}\right)\)
b,\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
\(\Rightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^7}\)
\(\Rightarrow2D=1-\frac{1}{3^8}\)
\(\Rightarrow D=\frac{3^8-1}{3^8}:2\)
a) Câu này đề chưa rõ rành lắm nên mk k làm nhé.
b) Đặt \(A=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
a) \(\frac{2015x\left(1-\frac{1}{2016}+\frac{1}{2017}\right)}{5x\left(1-\frac{1}{2016}+\frac{1}{2017}\right)}\)
\(=\frac{2015x}{5x}\)
\(=\frac{2015}{5}=403\)
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ............. + 1/99 - 1/100
= 1 - 1/100
= 99/100
(\(\frac{1}{2}\)+1).(\(\frac{1}{3}\)+1).(\(\frac{1}{4}\)+1)...(\(\frac{1}{999}\)+1)
Cách giải nữa nhá
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
= 1 - 1/6
= 5/6
1/2 + 1/6 + 1/12 + 1/20 + 1/30
= 30/60 + 10/60 + 5/60 + 3/60 + 2/60
= 50/60 = 5/6
Có ai đồng tình ý kiến với mình không
Ta có :
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
Vậy \(A=\frac{25}{17}\)
Chúc bạn học tốt ~
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\frac{4}{21}\)
\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)
\(B=33\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(C=\frac{1}{2}.\frac{98}{99}\)
\(C=\frac{49}{99}\)
ai k cho mình tròn 70 với