Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Xét TS : đặt 2 ra ngoài ta đc 2 ( 1/3 - 1/13 + 1/4391 )
Xét MS : đặt 4 ra ngoài ta đc 4 ( 1/3 - 1/13 + 1/4391 )
Rút gọn ( 1/3 - 1/13 + 1/4391 ) ở cả TS và MS ta đc kết quả là 2/4 hay 1/2
\(\frac{1991.1993-1}{1992+1990.1993}=\frac{1990.1993+1993-1}{1992+1990.1993}=\frac{1992+1990.1993}{1992+1990.1993}=1\)
\(\frac{1993.1991-1}{1992+1990.1993}=\frac{1993.\left(1990+1\right)-1}{1992+1990.1993}=\frac{1993.1990+1993-1}{1992+1990.1993}=\frac{1993.1990+1992}{1992+1990.1993}=1\)
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
H = ( m : 1 - m *1 ) : ( m *1991 + m + 1 )
H=(m-m):(m*1991+m+1)
H=0:(m*1991+m+1)
H=0
H= (m:1-m X 1) : (m X 1991 + m + 1)
= ( m - m ) : (m X1991 + m +1 )
= 0 : ( m X 1991 + m + 1 )
= 0
\(\frac{1991x1993-1}{1990+1991x1992}=\frac{1991x\left(1992+1\right)-1}{1990+1991x1992}=\frac{1991x1992+1991-1}{1990+1991x1992}=\frac{1991x1992+1990}{1990+1991x1992}=1\)
\(\frac{1991.1993-1}{1990+1991.1992}=1\)
k nha