\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\frac{49}{100}\)

\(=\frac{49}{200}\)

11 tháng 8 2016

Giúp mk mấy bài nhaEdowa Conan

\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...........+\frac{1}{98.100}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

cho mình nha!

28 tháng 3 2019

 \(A=\frac{-1}{2.4}+\frac{-1}{4.6}+\frac{-1}{6.8}+...+\frac{-1}{98.100}\Leftrightarrow.\)\(-2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\Leftrightarrow.\)

\(-2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{100}\Leftrightarrow.\)

\(-2A=\frac{1}{2}-\frac{1}{100}\Leftrightarrow-2A=\frac{49}{100}\Leftrightarrow A=\frac{-49}{200}.\)

ĐÁP SỐ :   \(A=\frac{-49}{200}.\)

28 tháng 3 2019

\(\frac{-49}{200}\)

16 tháng 8 2016

\(\frac{4}{2.4}+\frac{4}{4.6}+...+\frac{4}{98.100}\)

\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=2.\frac{49}{100}\)

\(=\frac{49}{50}\)

16 tháng 8 2016

\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)

\(=2\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=2\cdot\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=2\cdot\frac{49}{100}\)

\(=\frac{49}{50}\)

4 tháng 8 2018

\(\frac{5}{2.4}+\frac{5}{4.6}+...+\frac{5}{98.100}\)

\(\frac{5}{2}-\frac{5}{4}+\frac{5}{4}-\frac{5}{6}+...+\frac{5}{98}-\frac{5}{100}\)

\(\frac{5}{2}-\frac{5}{100}\)

\(\frac{49}{50}\)

4 tháng 8 2018

\(Q=\frac{5}{2.4}+\frac{5}{4.6}+...+\frac{5}{98.100}\)

    \(=5\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)

    \(=\frac{5}{2}.2.\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)

    \(=\frac{5}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)

    \(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

    \(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{5}{2}.\frac{49}{100}=\frac{49}{40}\)

\(\Rightarrow Q=\frac{49}{40}\)

14 tháng 8 2017

Ta có:

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{1}{4,6}+\frac{1}{6.8}+...+\frac{1}{98.100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}\)

14 tháng 8 2017

Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(4-2=2;6-4=2;...\)

\(2A=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(2A=\frac{1}{2}-\frac{1}{100}\)

\(2A=\frac{49}{100}\)

17 tháng 8 2016

a) \(\left(x+1\right)^2=64\Leftrightarrow\left|x+1\right|=8\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=8\\x+1=-8\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=7\\x=-9\end{array}\right.\)

b) \(\frac{9}{2.4}+\frac{9}{4.6}+...+\frac{9}{96.98}+\frac{9}{98.100}=\frac{9}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{48.49}+\frac{1}{49.50}\right)\)

\(=\frac{9}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{9}{4}\left(1-\frac{1}{50}\right)=\frac{441}{200}\)

17 tháng 8 2016

 

a)(x+1)2=64

x + 1      = 8

x            = 8 - 1

x            = 7

9 tháng 9 2016

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{28.30}\)

\(A=\frac{2}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{28.30}\right)\)

\(A=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{28.30}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{28}-\frac{1}{30}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{30}\right)\)

\(A=\frac{1}{2}.\frac{7}{15}\)

\(A=\frac{7}{30}\)

9 tháng 9 2016

\(2.A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{28.30}\)

\(2.A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{28}-\frac{1}{30}\)

\(2.A=\frac{1}{2}-\frac{1}{30}\)

\(2.A=\frac{7}{15}\)

\(A=\frac{7}{15}:2=\frac{7}{30}\)

26 tháng 4 2018

Ta có:

  B=\(\frac{4^2-2^2}{2^2\times4^2}+\frac{6^2-4^2}{4^2\times6^2}+...+\frac{98^2-96^2}{96^2\times98^2}+\frac{100^2-98^2}{98^2\times100^2}\)

   =\(\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

  = \(\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\) 

22 tháng 4 2018

Ai làm nhanh và đúng nhất thì mình k cho nhé <3