Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
Tìm x biết:
\(\frac{x}{3}-\frac{3}{4}=\frac{1}{12}\)
\(\frac{x}{3}=\frac{1}{12}+\frac{3}{4}\)
\(\frac{x}{3}=\frac{5}{6}\)
\(x=\frac{5}{6}.3\)
\(x=\frac{5}{2}\)
Vậy \(x=\frac{5}{2}\)
\(\frac{29}{30}-\left(\frac{13}{23}+x\right)=\frac{7}{69}\)
\(\frac{13}{23}+x=\frac{29}{30}-\frac{7}{69}\)
\(\frac{13}{23}+x=\frac{199}{230}\)
\(x=\frac{199}{230}-\frac{13}{23}\)
\(x=\frac{3}{10}\)
Vậy \(x=\frac{3}{10}\)
Bài 2: tính
\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{5}-\frac{1}{11}\)
\(=\frac{6}{55}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Bài 2:
1/30+1/42+1/56+1/72+1/90+1/110
=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11
=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11
=1/5-1/11=6/55
b)1/1.2+1/2.3+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50
=49/50
a,Ta có \(\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{1-\frac{2}{3}-\frac{1}{2}}-\frac{\frac{3}{5}-\frac{3}{7}-\frac{3}{11}}{\frac{6}{5}-\frac{6}{7}-\frac{6}{11}}\)
\(=\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{2.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)}-\frac{3.\left(\frac{1}{5}-\frac{1}{7}-\frac{1}{11}\right)}{6.\left(\frac{1}{5}-\frac{1}{7}-\frac{1}{11}\right)}\)
=\(\frac{1}{2}-\frac{3}{6}=\frac{1}{2}-\frac{1}{2}=0\)
Vậy giá trị biểu thức bằng 0
b, Mình không hiểu cho lắm ạ , nếu ko phiền xin xem lại đầu bài ạ
\(S=1+\frac{1}{\left(\frac{3.2}{2}\right)}+\frac{1}{\left(\frac{4.3}{2}\right)}+\frac{1}{\left(\frac{5.4}{2}\right)}+...+\frac{1}{\left(\frac{9.8}{2}\right)}\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{9}\right)\)
\(=1+2.\frac{7}{18}\)
\(=1\frac{7}{9}\)
Chúc bn học tốt nhé!!! :)
\(a,\left(10\frac{2}{9}.2\frac{3}{5}\right)-6\frac{2}{9}=\frac{1196}{45}-\frac{56}{9}=\frac{1196}{45}-\frac{280}{45}=\frac{916}{45}\)
\(b,\frac{6}{7}+\frac{1}{7}.\frac{2}{7}+\frac{1}{7}.\frac{5}{7}=\frac{1}{7}\left(6+\frac{2}{7}+\frac{5}{7}\right)=\frac{1}{7}.7=1\)
\(c,3.136.8+4.14.6-14.150=3264+336-2100=1500\)
\(d,\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
\(e,\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}=\frac{1}{3}-\frac{1}{39}=\frac{4}{13}\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{15}\left(1+2+...+15\right)+\frac{1}{16}\left(1+2+3+...+16\right)\)
\(A=1+\frac{1}{2}\cdot3+\frac{1}{3}\cdot6+\frac{1}{4}\cdot10+...+\frac{1}{15}+\left[\frac{\left(1+15\right)\cdot15}{2}\right]+\frac{1}{16}\cdot\left[\frac{\left(16+1\right).16}{2}\right]\)
\(A=1+\frac{3}{2}+2+\frac{5}{2}+....+\frac{1}{15}\cdot120+\frac{1}{16}\cdot136\)
\(A=1+\frac{3}{2}+2+\frac{5}{2}+...+8+\frac{17}{2}\)
\(A=\left(1+2+...+8\right)+\left(\frac{3}{2}+\frac{5}{2}+...+\frac{17}{2}\right)\)
Đặt \(B=1+2+...+8\)
\(C=\frac{3}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(B=1+2+...+8\)
\(\text{Ta thấy tổng B là dãy các số hạng liên tiếp từ 1 đến 8 }\)
\(\Rightarrow\text{số số hạng của B là}:\)\(\left(8-1\right)\div1+1=8\left(sh\right)\)
\(\text{Tổng B là }:\)\(\frac{\left(1+8\right)\cdot8}{2}=36\)
\(C=\frac{3}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(\Rightarrow C=\frac{3+5+...+17}{2}\)
Đặt \(D=3+5+...+17\)
\(\text{số số hạng của D là}:\)\(\left(17-3\right)\div2+1=8\left(sh\right)\)
\(\text{Tổng D là }:\)\(\frac{\left(3+17\right)\cdot8}{2}=80\)
\(\Rightarrow C=\frac{80}{2}=40\)
Thay B và C vào biểu thức A , ta được
\(A=36+40=76\)
Vậy A = 76
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)\)\(+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
\(\Rightarrow A=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{16}.\frac{16.17}{2}\)
\(\Rightarrow A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(\Rightarrow A=\frac{\frac{17.18}{2}-1}{2}=76.\)
Vậy \(A=76.\)
\(B1\)
\(=\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{37}-\frac{1}{38}-\frac{1}{39}\)
\(=1-\frac{1}{39}\)
\(=\frac{38}{39}\)
\(B2\)
\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+.....+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{25}{100}-\frac{1}{100}\)
\(=\frac{24}{100}\)
\(=\frac{6}{25}\)
Bài 1 :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{1.2}-\frac{1}{38.39}\)
\(=\frac{370}{741}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{30.31}\)
=\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{30.31}\right)\)
=2.\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{30}-\frac{1}{31}\right)\)
=\(2.\left(\frac{1}{2}-\frac{1}{31}\right)\)
=2.\(\frac{29}{62}\)
=\(\frac{29}{31}\)