
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a; A = \(\dfrac{4026\times2014+4030}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2014+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2013\times2+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-4026+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2011\right)}{2013\times2016-2011}\)
A = 2

a) \(\left(\frac{4}{3}-\frac{4}{6}\right)+\left(\frac{4}{6}-\frac{4}{9}\right)+\left(\frac{4}{9}-\frac{4}{10}\right)+\left(\frac{4}{12}-\frac{4}{15}\right)\)
\(=\frac{4}{15}-\frac{4}{3}=\frac{-16}{15}\)
C) bạn chỉ ần bỏ các số giống nhau thôi nhé
= 1
b)

=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)

\(1\cdot\frac{1}{15}\cdot1\frac{1}{16}\cdot1\frac{1}{17}\cdot....\cdot1\frac{1}{2016}\cdot1\frac{1}{2017}\)
\(=\frac{1}{15}\cdot\frac{17}{16}\cdot\frac{18}{17}\cdot....\cdot\frac{2017}{2016}\cdot\frac{2018}{2017}\)
\(=\frac{1}{15}\cdot\frac{1}{16}\cdot2018\)
Dấu "." là dấu nhân nhé bn! phần còn lại bn làm tiếp nha

Đặt biểu thức trên là A ta có:
A = \(\frac{1}{3}\)+ \(\frac{1}{6}\)+ \(\frac{1}{12}\)+ \(\frac{1}{24}\)+ \(\frac{1}{48}\)+ \(\frac{1}{96}\)
A x 3 = \(1\)+ \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ \(\frac{1}{8}\)+ \(\frac{1}{16}\)+ \(\frac{1}{32}\)
A x 3 = \(1\)+ \(1\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{8}\)+ \(\frac{1}{8}\)- \(\frac{1}{16}\)+ \(\frac{1}{16}\)- \(\frac{1}{32}\)
A x 3 = 2 - \(\frac{1}{32}\)= \(\frac{63}{32}\)
A = \(\frac{63}{32}\): 3 = \(\frac{63}{96}\)

ĐẶT BIỂU THỨC TRÊN LÀ M
TA CÓ \(2M=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{64}\)
\(\Rightarrow2M-M=1+\frac{1}{2}+\frac{1}{4}+..+\frac{1}{64}-\frac{1}{2}+\frac{1}{4}+..+\frac{1}{128}\)
\(\Rightarrow M=1+\frac{1}{28}\)
A= \(\frac{1}{2}\)+\(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
2A=2(\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\))
=1+\(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\)
2A-A= (\(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\)) -(\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\))
A=1-\(\frac{1}{128}\)
A=\(\frac{127}{128}\)

\(A=\frac{2019}{2}+\frac{2019}{6}+\frac{2019}{12}+....+\frac{2019}{2018.2019}\)
\(=\frac{2019}{1}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2018.2019}\right)\)
\(=\frac{2019}{1}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(=\frac{2019}{1}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+....+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=\frac{2019}{1}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{2019}{1}.\frac{2018}{2019}\)
\(=2018\)
\(A=\frac{2019}{2}+\frac{2019}{6}+\frac{2019}{12}+\frac{2019}{20}+\frac{2019}{30}+\frac{2019}{2018.2019}\)
\(A=\frac{2019}{1.2}+\frac{2019}{2.3}+\frac{2019}{3.4}+\frac{2019}{4.5}+\frac{2019}{5.6}+...+\frac{2019}{2018.2019}\)
\(A=2019.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(A=2019.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(A=2019.\left(1-\frac{1}{2019}\right)\)\(=2019.\frac{2018}{2019}=2018\)
Vậy A = 2018
-Dấu " . " là dấu nhân.

Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
\(\dfrac{3,5\times9-12,5\times0,8\times3,5+3,5\times6}{12,5\times0,8\times3,5}\\ =\dfrac{3,5\times9-10\times3,5+3,5\times6}{10\times3,5}\\ =\dfrac{3,5\times5}{3,5\times10}=\dfrac{3,5}{2}=1,75.\)