Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4}{4.5}+\frac{4}{5.6}+\frac{4}{6.7}+...+\frac{4}{47.48}\)
\(A=4.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+......+\frac{1}{47.48}\right)\)
\(A=4.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{47}-\frac{1}{48}\right)\)
\(A=4.\left(\frac{1}{4}-\frac{1}{48}\right)\)
\(A=4.\frac{11}{48}\)
\(A=\frac{11}{12}\)
bài A: áp dụng công thức: 1 + 2 + 3 + ... + n = n x (n + 1) : 2 tính được 5050
bài B: áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) rồi triệt tiêu gần hết, qui đồng mẫu số tính được B = 99/100
A = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100
= ( 100 + 1 ) x 100 : 2 = 5050
Vậy A = 5050
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Vậy \(B=\frac{99}{100}\)
Học tốt #
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(1-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)
\(\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\Rightarrow x+\frac{266}{100}=5\Rightarrow x=\frac{117}{50}\)
Vậy x = 117/50
Ta có:
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right).100\\ =\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100\)
\(=\left(1-\frac{1}{10}\right).100\)
\(=\frac{9}{10}.100\)
= 90
Khi đó đề bài sẽ thành : \(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\Rightarrow\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)
\(\Rightarrow\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\)
\(\Rightarrow x+\frac{266}{100}=5\)
\(\Rightarrow x=\frac{117}{50}\)
Vậy \(x=\frac{117}{50}\)
a, 6/9+5/7+1/3=2/3+5/7+1/3=5/7+1=12/7
b, 17/7+6/5-20/14=17/7+6/5-10/7=6/5+1=11/5
c,2/5x1/4+3/4x2/5=2/5x(1/4+3/4)=2/5x1=2/5
d, 6/11:4/6+5/11:2/3=6/11:2/3+5/11:2/3=(6/11+5/11):2/3=3/2
nha
\(\frac{22}{7}\)> \(\frac{11}{5}\)vì 22 : 7 = 3,14 ; 11: 5 = 2,2
\(\frac{15}{59}\)< \(\frac{24}{97}\)vì 15 : 59 = 0,21 ; 24 : 97 = 0,24
\(\frac{11}{19}\)< \(\frac{13}{18}\)vì 11 : 19 = 0,57 ; 13 : 18 = 0,72
\(\frac{7}{10}\)> \(\frac{4}{9}\)vì 7 : 10 = 0,7 ; 4 : 9 = 0,44
a, \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{5}\)+ \(\frac{1}{6}\)
= (\(\frac{1}{2}+\)\(\frac{1}{3}+\)\(\frac{1}{6}\)) + \(\frac{1}{5}\)
= 1 + \(\frac{1}{5}\)
= \(\frac{6}{5}\)
b, mk chịu
a) \(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{6}=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\frac{1}{5}\)
\(=\left(\frac{3}{6}+\frac{2}{6}+\frac{1}{6}\right)+\frac{1}{5}\)
\(=1+\frac{1}{5}\)
\(=\frac{6}{5}\)
b) \(\frac{4}{6}+\frac{7}{13}+\frac{17}{9}+\frac{19}{13}-\frac{8}{9}+\frac{14}{6}=\left(\frac{4}{6}+\frac{14}{6}\right)+\left(\frac{7}{13}+\frac{19}{13}\right)+\left(\frac{17}{9}-\frac{8}{9}\right)\)
\(=\frac{18}{6}+\frac{26}{13}+\frac{9}{9}=3+2+1=6\)
C=\(\frac{7}{3.4}\)-\(\frac{9}{4.5}\)+\(\frac{11}{5.6}\)+\(\frac{13}{6.7}\)+\(\frac{15}{7.8}\)-\(\frac{17}{8.9}\)+\(\frac{19}{9.10}\)
=\(\frac{1}{3}\)+\(\frac{1}{4}\)-\(\frac{1}{4}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{6}\)-\(\frac{1}{6}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)+\(\frac{1}{8}\)-\(\frac{1}{8}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)+\(\frac{1}{10}\)
=\(\frac{1}{3}\)+\(\frac{1}{10}\)=\(\frac{13}{30}\)
fddddddddddddddddddddddddddddddddddddddddđ