Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các số có dạng : \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a}-\)\(\frac{1}{a+1}\)
Thế vào bởi các số sẽ có kết quả
b) Các số có dạng : \(\frac{1}{a\left(a+2\right)}=\frac{1}{2}.\frac{2}{a\left(a+2\right)}=\frac{1}{2}.\frac{\left(a+2\right)-a}{a\left(a+2\right)}\)\(=\frac{1}{2}.\left(\frac{1}{a}-\frac{1}{a+2}\right)\)
Làm tương tự trên
c) Lấy nhân tử chung là 5 rồi làm như câu a)
7 . (-2)^3 - 60:15
= 7 . (-8) - 4
= (-56)- 4
= - 60
125 - (-75) + 32 - (48 + 32)
= 125-75 + 32 - 48 -32
= 50 + (-48)
=2
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
A = (-1)(-1)^2(-1)^3...(-1)^2019
A = (-1)^1+2+3+...+2019
A = (-1)^2039190
A = 1
S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 2018.2019.2020
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 2018.2019.2020.4
4S = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 2018.2019.2020.(2021 - 2017)
4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2018.2019.2020.2021 - 2017.2018.2019
4S = 2018.2019.2020.2021
S = 2018.2019.2020.2021 : 4 = ...
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=1-\frac{1}{2020}\)
\(A=\frac{2019}{2020}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}=\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2B=1-\frac{1}{2019}\)
\(2B=\frac{2018}{2019}\)
\(B=\frac{2018}{2019}:2=\frac{1009}{2019}\)