Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+10\right)}{1.10+2.9+3.8+...+10.1}\)
\(=\frac{\left(1+1+...+1\right)+\left(2+2+...+2\right)+...+\left(10\right)}{10.1+8.2+....+1.10}\)
\(=\frac{1.10+2.9+....+10.1}{1.10+2.9+...+10.1}=1\)
Đặt A = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+10}\)
\(A=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{10.11}{2}}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(A=2\cdot\frac{9}{22}=\frac{9}{11}\)
Vậy A = \(\frac{9}{11}\)
Sửa lại chút:
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+10}=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{55}=2x\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{110}\right)\)
\(=2x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=\frac{1}{2}x\left(\frac{1}{2}-\frac{1}{11}\right)=2x\frac{9}{22}=\frac{9}{11}\)
A = \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{9\times10}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
A = \(1-\frac{1}{10}\)
A = \(\frac{9}{10}\)