Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
532 + 106 * 47 + 472
= 532 + 2 * 53 * 47 + 472
= ( 53 + 47 )2 = 1002 = 10000
a) \(A=5^4.3^4-\left(15^2-1\right)\left(15^2+1\right)=\left(5.3\right)^4-\left(\left(15^2\right)^2-1^2\right)\)
\(=15^4-\left(15^4-1\right)=15^4-15^4+1=1\)
b) \(C=50^2-49^2+48^2-47^2+...+2^2-1^2\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1.99+1.95+...+1.3=99+95+...+3\)
\(=\left(99+3\right)+\left(95+7\right)+...+\left(55+47\right)+51\)
\(=102+102+...+102+51\)
số lượng con số \(102\) là \(\dfrac{25-1}{2}=12\)
\(\Rightarrow C=102.12+51=1224+51=1275\)
a) \(A=\frac{97^3+83^3}{180}-97\cdot83\)
\(A=\frac{\left(97+83\right)\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(A=\frac{180\cdot\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(A=97^2-97\cdot83+83^2-97\cdot83\)
\(A=9409-2\cdot8051+6889\)
\(A=196\)
b) \(B=\left(50^2+48^2+...+2^2\right)-\left(49^2+47^2+...+1^2\right)\)
\(B=50^2+48^2+...+2^2-49^2-47^2-...-1^2\)
\(B=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
\(B=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...+\left(2+1\right)\left(2-1\right)\)
\(B=50+49+48+47+...+2+1\)
Số số hạng là : \(\left(50-1\right):1+1=50\)( số )
Tổng B là : \(\left(50+1\right)\cdot50:2=1275\)
Vậy....
\(50^2-49^2+48^2-47^2+46^2-45^2+...+2^2-1^2\)
\(=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=49+50+48+47+...+2+1\)
\(=49\div2\times50\)
\(=1225\)
\(50^2-49^2+48^2-47^2+........+2^2-1^2.\)
\(=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+........+\left(2+1\right)\left(2-1\right)\)
\(=49+50+48+47+.....+2+1\)
\(=49\div2\times50=1225\)
Ta có: \(50^2-49^2+48^2-47^2+....+2^2-1^2\)
\(=\left(50^2-1^2\right)-\left(49^2-2^2\right)-\left(48^2-3^2\right)-...-\left(27^2-24^2\right)-\left(26^2-25^2\right)\)
\(=\left(51\cdot49\right)-\left(51\cdot47\right)-\left(51\cdot45\right)-....-\left(51\cdot3\right)-\left(51\cdot1\right)\)
=51(49-47-45-...-3-1)
=51*25
=1275
(502+482+...+22) - (492+472+...+12)
= (502-492) + (482-472) + ... + (22-12)
= (50+49)(50-49) + (48+47)(48-47) + ... + (2+1)(2-1)
= 50+49+48+47+...+1
= \(\frac{\left(50+1\right).50}{2}=\frac{51.50}{2}=1275\)