Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)
\(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=3^{32}-1\)
đặt A=(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)
=>2A=2.(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)
=>2A=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)
=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)
=(34-1)(34+1)(38+1)(316+1)(332+1)
=(38-1)(38+1)(316+1)(332+1)
=(316-1)(316+1)(332+1)
=(332-1)(332+1)
=364-1
=>2A=\(\frac{3^{64}-1}{2}\)
bạn ơi: A=\(\frac{3^{64}-1}{2}\) chứ ko phải 2A=\(\frac{3^{64}-1}{2}\)
a: \(=\dfrac{3^8-3^6+3^6\cdot2^3}{5^3}=\dfrac{3^8-3^6\left(1-2^3\right)}{5^3}=\dfrac{11664}{125}\)
b: \(=\dfrac{7^4\cdot4-7^3}{7^3}=7\cdot4-1=27\)
c: \(=28^4-28^4+1=1\)
d: \(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)
\(=3^{32}\)
\(B=...=\frac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)
\(=\frac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}=\frac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}=\frac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}=\frac{3^{32}-1}{2}< 3^{32}-1=A\)
Ta có : \(B=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right)+\left(3^{16}+1\right)\)
\(\Rightarrow\) \(2B=2.\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3^2-1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3^4-1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3^8-1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right).\left(3^{16}+1\right)\)
\(=3^{32}-1\)
\(\Rightarrow\) \(B=\frac{3^{32}-1}{2}< 3^{32}-1\)
\(\Rightarrow\) \(B< A\)
như thế này chứ:
A=1002-992+982-972+...+22-12
B=12-22+32-42+...-20082-20092
C=3.(22+1)(24+1)(28+1)(216+1)-232
Đặt A = ( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
=> 2A = 2.( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 3 - 1 )( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 32 - 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 34 - 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 38 - 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 316 - 1 )( 316 + 1 )( 332 + 1 )
= ( 332 - 1 )( 332 + 1 )
= 364 - 1
2A = 364 - 1 => A = \(\frac{3^{64}-1}{2}\)
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Leftrightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Leftrightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Leftrightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Leftrightarrow2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Leftrightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Leftrightarrow2A=3^{32}-1\)
\(\Leftrightarrow A=3^{31}-\frac{1}{2}\)