Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
(-4;-3;-2;-1;0;1;2;3;4)
Ko có dấu ngoặc nhọn nên mik xài ngoặc tròn nha
\(99-97+95-93+91-89+...+7-5+3-1\)
\(=\left(99-97\right)+\left(95-93\right)+...\left(7-5\right)+\left(3-1\right)\)
\(=2.25\)
\(=50\)
ta thấy
\(4000:82=48\) ( dư 674)
số \(64>47\Rightarrow\) số bị chia < 4000 là :
\(82.48+47=3983\)
vì 3983<4000 ( t/m)
=> số chia là 48
\(a,2019-7\left(x+1\right)=100\)
=>\(7\left(x+1\right)=2019-100=1919\)
( đến đoạn này có 2 cách làm , bạn thích chọn cách nào thì làm nha ! )
=>\(\left[{}\begin{matrix}x+1=1919:7\\7x+7=1919\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+1=\frac{1919}{7}\\7x=1919-7=1912\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{1919}{7}-1=\frac{1912}{7}\\x=\frac{1912}{7}\end{matrix}\right.\)
Vậy x ∈ {\(\frac{1912}{7}\)}
\(b,\left(3x-6\right).3=34\)
=>\(3x-6=\frac{34}{3}\)
=>\(3x=\frac{34}{3}+6=\frac{52}{3}\)
=> \(x=\frac{52}{3}:3=\frac{52}{9}\)
Vậy x ∈ {\(\frac{52}{9}\)}
Bài đây tính nhanh nhé ミ★ʟuғғʏ☆мũ☆ʀơм★彡 chứ không phải quy đồng lên đâu :)
a) \(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)
\(A=49\frac{8}{23}-5\frac{7}{32}-14\frac{8}{23}\)
\(A=\left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}=35-5\frac{7}{32}=35-\frac{167}{32}=\frac{953}{32}\)
b) \(B=\frac{-3}{7}\cdot\frac{5}{9}+\frac{4}{9}:\frac{-7}{3}+2\frac{3}{7}\)
\(B=\frac{-3}{7}\cdot\frac{5}{9}+\frac{4}{9}\cdot\frac{-3}{7}+2\frac{3}{7}\)
\(B=\frac{-3}{7}\left(\frac{5}{9}+\frac{4}{9}\right)+2\frac{3}{7}\)
\(B=\frac{-3}{7}+\frac{17}{7}=\frac{14}{7}=2\)
c) \(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right)\cdot\frac{4}{5}\)
\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]\cdot\frac{4}{5}\)
\(C=\left[\left(19\frac{5}{8}-13\frac{2}{8}\right):\frac{7}{12}\right]\cdot\frac{4}{5}\)
\(C=6\frac{3}{8}\cdot\frac{4}{5}=\frac{51}{8}\cdot\frac{4}{5}=\frac{51}{2}\cdot\frac{1}{5}=\frac{51}{10}\)
d) \(D=\frac{54\cdot107-53}{53\cdot107+54}=\frac{\left(53+1\right)\cdot107-53}{53\cdot107+54}=\frac{53\cdot107+107-53}{53\cdot107+54}=\frac{53\cdot107+54}{53\cdot107+54}=1\)
a) 198 + 232 - 98 - 32 = (232 - 32) + (198 - 98) = 300.
b) 567 - 32 - 68 = 567 - (32 + 68) = 467.
c) 99 - 97 + 95 - 93 + 91 - 89+ ...+7 - 5 + 3 - 1
= (99 - 97) + (95 - 93) + (91 - 89) +... + (7 - 5) + (3 -1)
= 2 + 2 + 2 + . .. + 2 + 2 = 2.25 = 50.