Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{-5}{13}+\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)=\frac{-5}{13}-\frac{3}{5}-\frac{3}{13}+\frac{4}{10}=\left(\frac{-5}{13}-\frac{3}{13}\right)+\frac{4}{10}-\frac{3}{5}=\frac{-5-3}{13}+\left(\frac{4}{10}-\frac{6}{10}\right)=\frac{-8}{13}+\frac{-2}{10}=\frac{-80}{130}+\frac{-26}{130}=\frac{-106}{130}=\frac{-53}{65}\)
\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)
\(=\frac{2}{4}=\frac{1}{2}\)
\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)
\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)
\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)
\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)
\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)
\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\) \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)
\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\) \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)
\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\) \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)
\(=\frac{58}{7}-\frac{487}{63}\) \(=\frac{577}{45}-\frac{280}{45}\)
\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\) \(=\frac{33}{5}\)
\(P=M-N\)
\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)
\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)
\(\Rightarrow P=\frac{-272}{45}\)
Vậy P = \(\frac{-272}{45}\)
\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)
\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)
\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)
\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)
\(=\frac{3}{8}+\frac{5}{8}=1\)
Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !
a, 1/1.2+1/1.3+...+1/99.100
= 1-1/2+1/2-1/3+1/3+...+1/99-1/100
=1-1/100
=99/100
a)\(\frac{-10}{13}+\frac{8}{17}-\frac{3}{13}+\frac{12}{17}-\frac{11}{20}\)
= \(\frac{-10}{13}+\frac{8}{17}+\frac{-3}{13}+\frac{12}{17}+\frac{-11}{20}\)
=\(\left(\frac{-10}{13}+\frac{-3}{13}\right)+\left(\frac{8}{17}+\frac{12}{17}\right)+\frac{-11}{20}\)
=\(\frac{-13}{13}+\frac{20}{17}+\frac{-11}{20}\)
= \(\frac{-127}{340}\)
b) \(\frac{3}{4}+\frac{-5}{6}-\frac{11}{-12}\)
= \(\frac{3}{4}+\frac{-5}{6}+\frac{11}{12}\)
= \(\frac{9}{12}+\frac{-10}{12}+\frac{11}{12}\)
=\(\frac{10}{12}=\frac{5}{6}\)
c) \(\left[13.\frac{4}{9}+2.\frac{1}{9}\right]-3.\frac{4}{9}\)
= \(13+2.\left(\frac{4}{9}+\frac{1}{9}\right)-3.\frac{4}{9}\)
=\(15.\frac{5}{9}-3.\frac{4}{9}\)
=\(\left[15-3.\left(\frac{5}{9}-\frac{4}{9}\right)\right]\)
=\(12.\frac{1}{9}\)
=\(\frac{4}{3}\)
Chúc bạn học tốt nhea. k mik nha ! ♥☺☺
a) \(2\frac{3}{13}-\frac{5}{9}-\left(\frac{3}{13}+\frac{4}{9}\right)\)
= \(\frac{29}{13}-\frac{5}{9}-\left(\frac{3}{13}+\frac{4}{9}\right)\)
= \(\left(\frac{29}{13}-\frac{3}{13}\right)-\left(\frac{5}{9}+\frac{4}{9}\right)\)
= \(2-1\)
= \(1\)
b) \(17\frac{4}{16}+\frac{3}{4}-\left(2\frac{3}{12}+75\%\right)\)
= \(\frac{69}{4}+\frac{3}{4}-\left(\frac{27}{12}+\frac{3}{4}\right)\)
= \(\left(\frac{69}{4}+\frac{3}{4}\right)-\left(\frac{27}{12}+\frac{3}{4}\right)\)
= \(18-3\)
= \(15\)
c) \(\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+....+\frac{6}{101.103}+\frac{6}{103.106}\)
= \(3.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+....+\frac{2}{101.103}+\frac{2}{103.106}\right)\)
= \(3.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{101}-\frac{1}{103}+\frac{1}{103}-\frac{1}{106}\right)\)
= \(3.\left(\frac{1}{5}-\frac{1}{106}\right)\)
= \(3.\frac{101}{530}\)
= \(\frac{303}{530}\)