K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

252 - 152

= (25 - 15)(25 + 15)

= 10.40

= 400

18 tháng 8 2019

252 - 152

= 102

28 tháng 7 2019

\(a,35x^2y-14xy+21xy^2=7xy\left(5x+3y-2\right)\)

\(b,x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)

\(c,x^2-7x+xy-7y=x\left(x-7\right)+y\left(x-7\right)=\left(x-7\right)\left(x+y\right)\)

\(d,x^2-y^2-10x+25=\left(x-5\right)^2-y^2=\left(x-y-5\right)\left(x+y-5\right)\)

\(e,x^3y+2x^2y^2-xyz^2+xy^3=xy\left(x^2+2xy+y^2-z^2\right)\)

\(=xy\left[\left(x+y\right)^2-z^2\right]=xy\left(x+y-z\right)\left(x+y+z\right)\)

18 tháng 12 2019

a) x^3 - 2xy^2 + 4y^3

b) x^2 + 3

chúc bạn hc tốt

14 tháng 12 2015

@Lan Anh Nguyễn Chỉ chi tiết đi bạn -_-

17 tháng 6 2018

Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.

Bài 2: 

a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)

\(=4x^2+20x+25\)

b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)

\(=9x^2+24x+16\)

c/\(\left(3x+5y+\frac{1}{2}\right)^2\)

Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)

\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)

Bài 3:

a/ A= x2+10x+30

A= x2+2.5x+25+5

A= x2+2.5.x+52+5

A=(x+5)2+5

Ta có (x+5)2 luôn luôn > hoặc = 0

=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)

=> A luôn dương.

b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)

\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)

(Tương tự như câu A)

Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0

=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)

=> B luôn dương.

c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)

(Chứng minh tương tự câu a, b)

Chúc bạn học tốt!!

17 tháng 6 2018

mk giúp bạn bài  3 còn bài 1, 2 tự làm nha

a , A = x2  + 10x +30 

= (x2 + 2 . 5 . x +52 ) +5

= (x+5)2 + 5

Vì (x+5)2  >= 0 (luôn đúng)

=> (x+5)2 + 5  luôn luôn dương

a) 7x+7y=7(x+y)

b) 2x2y-6xy2=2xy(x-3y)

c)3x(x-1)+7x2(x-1)=x(x-1)(3+7x)

d)3x(x-4)+5x2(4-x)=(x-4)(3x-5x2)

=x(x-4)(3-5x)

e)6x4-9x3=3x3(2x-3)

f)5y8-15y6=5y6(y2-3)