Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(2018^2-2017\cdot2019\\ =2018^2-\left(2018-1\right)\left(2018+1\right)\\ =2018^2-2018^2+1\\ =1\)
b, Đề khó nhìn bạn ạ, gõ Latex đi bạn! :)
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT
\(B=\left(2x-1\right)^2+2.\left(2x-1\right)\left(2x-3\right)+\left(2x-3\right)^2+2019\)
\(=\left(2x-1+2x-3\right)^2+2019\)
\(=\left(4x-4\right)^2+2019\)
\(=\left(4.2018-4\right)^2+2019\)
\(=\left(8072-4\right)^2+2019\)
\(=8068^2+2019=65092624+2019=65094643\)
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)
hay \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\)
Thay a = b = c = 0 vào M rồi tính như bình thường nha bạn!
Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^2=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a^2=0\\b^2=0\\c^2=0\end{cases}\Leftrightarrow a=b=c=0}\)
\(\Rightarrow\)\(M=\left(a-2018\right)^{2019}+\left(b-2018\right)^{2019}-\left(c+2018\right)^{2019}\)
\(\Rightarrow\)\(M=-2018^{2019}-2018^{2019}-2018^{2019}\)
\(\Rightarrow\)\(M=-3.2018^{2019}\)
Chúc bạn học tốt ~
2018^3 -1 = (2018-1)(2018^2 + 2018+1)
2018^2 + 2019 = 2018^2 + 2018+1
Vậy 2018^3 -1 / 2018^2 +2019 = 2018 -1= 2017
Chúc bạn học tốt.