K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2019

\(\frac{1}{5}+\frac{4}{10}+\frac{9}{15}+\frac{16}{20}+1+\frac{36}{30}+\frac{49}{35}+\frac{64}{40}+\frac{81}{45}\)

\(=\left(\frac{1}{5}+\frac{81}{45}\right)+\left(\frac{4}{10}+\frac{49}{35}\right)+\left(\frac{9}{15}+\frac{49}{35}\right)+\left(\frac{16}{20}+\frac{36}{30}\right)+1\)

\(=2+2+2+2+1\)

\(=2\times4+1\)

\(=9\)

~ Hok tốt ~

25 tháng 8 2018

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)\)

\(=\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}\)

\(=\frac{2}{6}\)

\(=\frac{1}{3}\)

25 tháng 8 2018

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)

\(=\frac{1}{5}\)

\(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{36}\right)\)

\(=\frac{3}{4}.\frac{8}{9}....\frac{35}{36}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}.\frac{5.7}{6.6}\)

\(=\frac{7}{2.6}=\frac{7}{12}\)

P/S: dấu "." là dấu nhân nhé

15 tháng 7 2018

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Mình chỉnh lại đề B nha:

\(B=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)

15 tháng 7 2018

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

24 tháng 2 2016

A=1/15+1/35+1/63+1/99+1/143+1/195+1/255+1/323

=> A = 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13 + 1/13.15 + 1/15.17 + 1/17.19

=> 2A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/17 - 1/19

=> 2A = 1/3 - 1/19

=> 2A = 16/57 => A = 16/57 : 2 = 8/57

24 tháng 2 2016

=>=> A = 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13 + 1/13.15 + 1/15.17 + 1/17.19

=>=> 2A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/17 - 1/19

=> 2A = 1/3 - 1/19

=> 2A = 16/57 => A = 16/57 : 2 = 8/57

27 tháng 7 2024

a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)

= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)

= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8

=  1 + 1 + 8

=  2 + 8

= 10

27 tháng 7 2024

b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)

=  \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)\(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))

\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)

\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8

\(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8

\(\dfrac{1}{2}\) + 4

\(\dfrac{9}{2}\) 

 

21 tháng 9 2024

a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)

  = (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8

= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8

= 1 + 1 + 8

= 2 + 8

= 10

21 tháng 9 2024

b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)

\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)

\(\dfrac{1}{2}\) x 10

= 5

DD
3 tháng 6 2021

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(2\times A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(2\times A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)

\(A=1-\frac{1}{128}\)

\(A=\frac{127}{128}\)

DD
3 tháng 6 2021

\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)

\(2\times B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)

\(B=1-\frac{1}{16}=\frac{15}{16}\)

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)

\(\Leftrightarrow4\times x+\frac{15}{16}=1\)

\(\Leftrightarrow4\times x=\frac{1}{16}\)

\(\Leftrightarrow x=\frac{1}{64}\)