![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(=\frac{2017}{2016}.\frac{3}{4}-\frac{1}{2016}.\frac{3}{4}\)
\(=\frac{3}{4}\left(\frac{2017}{2016}-\frac{1}{2016}\right)\)
\(=\frac{3}{4}.1\)
\(=\frac{3}{4}\)
b)\(=\frac{2015}{2016}\left(\frac{1}{2}+\frac{1}{3}-\frac{5}{6}\right)\)
\(=\frac{2015}{2016}.0\)
\(=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(1+2\right).\frac{1}{2}+\left(1+2+3\right).\frac{1}{3}+...+\left(1+2+3+...+2016\right).\frac{1}{2016}\)
\(A=\left(1+2\right).2:2.\frac{1}{2}+\left(1+3\right).3:2.\frac{1}{3}+...+\left(1+2016\right).2016:2.\frac{1}{2016}\)
\(A=3:2+4:2+...+2017:2\)
\(A=3.\frac{1}{2}+4.\frac{1}{2}+...+2017.\frac{1}{2}\)
\(A=\frac{1}{2}.\left(3+4+...+2017\right)\)
\(A=\frac{1}{2}.\left(3+2017\right).2015:2\)
\(A=\frac{1}{2}.2020.2015.\frac{1}{2}\)
\(A=505.2015=1017575\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2016}\)
\(=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2016\right).2016:2}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2017}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{2017}=1-\frac{2}{2017}=\frac{2015}{2017}\)