\(100^2-99^2+98^2-97^2+.................+2^2-1^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

\(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100-99\right).\left(100+99\right)+\left(98-97\right).\left(98+97\right)+...+\left(2-1\right).\left(2+1\right)\)

\(=1.\left(1+2\right)+1.\left(3+4\right)+...+1.\left(99+100\right)\)

\(=1.\left(1+2+3+...+99+100\right)\)

\(=\frac{\left(100+1\right).100}{2}\)

\(=101.50\)

\(=5050\)

Tham khảo nhé~

\(100^2-99^2+98^2-97^2+......+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+......+\left(2-1\right)\left(2+1\right)\)

\(=199+195+.....+3\)

Rồi bạn chỉ cần tính tổng những số này thôi 

Mỗi số đều cách nhau 3 đơn vị

16 tháng 8 2016

\(100^2-99^2+98^2-97^2+...+2^2-1^2\)\(1^2\)

\(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+....+\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+97+...+2+1\)

\(=\left(100+1\right).100:2\)

\(=5050\)

19 tháng 5 2015

1002-992+982-972+962...+22-1

=(100-99)x(100+99)+(98-97)x(98+97)+...+(2-1)x(2+1)

=100+99+98+98+...+2+1

=5050

chọn đúng cho mình điểm nha!

19 tháng 5 2015

1002-992+982-972+962...+22-1

=(100-99)x(100+99)+(98-97)x(98+97)+...+(2-1)x(2+1)

=100+99+98+98+...+2+1

=5050

23 tháng 11 2016

a/ A = 1002 - 992 + 982 -...+22 - 12

= (1002 - 992) + (982 - 972) +...+ (22 - 12)

= 199 + 195 + 191 + ... + 1

= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050

23 tháng 11 2016

b/ Y chang câu a luôn nha

c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)

\(=\frac{560.1000}{200^2}=14\)

7 tháng 11 2018

1002 - 992 + 982 - 972 + ... + 22 - 12

= (100 - 99) (100 + 99) + (98 - 97) (98 + 97) + (2 - 1) (2 + 1)

= 199 + 195 + ... + 3 (cách nhau 4 đơn vị)

Số số hạng trong tổng

[(199 - 3) : 4] + 1 = 50

Tổng :

(199 + 3) . 50 : 2 = 5050

Vậy 1002 - 992 + 982 - 972 + ... + 22 - 12 = 5050

Không đúng thì bỏ qua nha!!!@@@

Vì mình không giỏi toán đâu !!@!@

15 tháng 8 2017

a. 134^2 - 68.134 + 34^2 = ( 134 - 34 ) ^2 = 100^2 = 10000

b. 9^8.2^8 - ( 18^4 - 1 )(18^4 + 1 ) = 18^8 - 18^8 + 1 = 1

c. 100^2 - 99^2 + 98^2 - 97^2 + ... + 2^2 - 1 

=( 100 - 99 )( 100 + 99 ) + ( 98 - 97 )( 98 + 97 ) + ... + ( 2 - 1 )( 2 + 1 )

= 100 + 99 + 98 + 97 + ... + 2 + 1

=( 100 + 1 ).100:2 = 5050

8 tháng 6 2015

=(100+99)(100-99)+(98+97)(98-97)+....+(2+1)(2-1)

=199+195+....+3

dãy số trên có số số hạng là :

(199-3):4+1=50 (số hạng)

tổng dãy số trên là :

(199+3)50/2=5050

vậy 100^2-99^2+98^2-97^2+...+2^2-1^2=5050

2 tháng 10 2016

đề bài là.......

2 tháng 10 2016

\(P=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(P=100+99+98+...+2+1\)

\(P=\frac{100\times101}{2}=5050\)

15 tháng 7 2015

a) Áp dụng hằng đẳng thức ta đc:

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+87\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=199+195+191+...+3\)

\(=\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right):2=50\cdot101=5050\)

15 tháng 7 2015

a) Áp dụng hằng đẳng thức ta đc:

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+87\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=199+195+191+...+3\)

\(=\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right):2=50\cdot101=5050\)

b) mk nghĩ bước đầu tiên là phải bỏ ngoặc:

 \(=20^2+18^2+16^2+...4^2+2^2-19^2-17^2-....-3^2-1^2\)

\(=\left(20^2-19^2\right)+\left(18^2-17^2\right)+...+\left(4^2-3^2\right)-1^2\)

\(=\left(20+19\right)\left(20-19\right)+\left(18+17\right)\left(18-17\right)+...+\left(4-3\right)\left(4+3\right)-1\)

\(=\left(39+35+31+...+7\right)-1\)

\(=\left(\left[\left(39-7\right):4+1\right]\cdot\left(39+7\right):2\right)-1=207-1=206\)

12 tháng 9 2016

\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(\Rightarrow A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)

\(\Rightarrow A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(\Rightarrow A=100+99+....+2+1=\frac{\left(100+1\right)100}{2}=5050\)

12 tháng 9 2016

Áp dụng hằng đẳng thức \(A^2-B^2=\left(A+B\right)\left(A-B\right)\)

\(\Rightarrow A=\left(100-99\right)\left(100+99\right)+\left(98+97\right)\left(98-87\right)+....+\left(2+1\right)\left(2-1\right)\)

\(\Rightarrow A=100+99+8+..+1\)

\(\Rightarrow A=\frac{\left(100+1\right)100}{2}\)

\(\Rightarrow A=5050\)