\(\frac{1}{123}\).2\(\frac{1}{357}\)-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

\(\frac{1}{x-1}-\frac{1}{x+1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^5+1}-\frac{16}{x^{16}+1}\)

\(=\frac{x+1-x+1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{2}{x^2-1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{2\left(x^2+1\right)-2.\left(x^2-1\right)}{x^2-1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{2x^2+2-2x^2+2}{\left(x^2+1\right)\left(x^2-1\right)}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{4}{x^4-1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{4\left(x^4+1\right)-4\left(x^4-1\right)}{\left(x^4-1\right)\left(x^4+1\right)}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{8}{x^8-1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{8.\left(x^8+1\right)-8\left(x^8-1\right)}{\left(x^8-1\right)\left(x^8+1\right)}-\frac{16}{x^{16}+1}\)

\(=\frac{16}{x^{16}-1}-\frac{16}{x^{16}+1}\)

\(=\frac{16.\left(x^{16}+1\right)-16.\left(x^{16}-1\right)}{\left(x^{16}-1\right)\left(x^{16}+1\right)}\)

\(=\frac{32}{x^{32}-1}\)

1 tháng 12 2019

1. Ta có:

\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)

\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{2}{x}-\frac{1}{x+2014}\)

\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)

\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)

1 tháng 12 2019

2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1

b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

A = \(x-1+x+1-3\)

A = \(2x-3\)

c) Với x = 3 => A = 2.3 - 3 = 3

c) Ta có: A = -2

=> 2x - 3 = -2

=> 2x = -2 + 3 = 1

=> x= 1/2

28 tháng 11 2016

Ta có

a + b + c = abc

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Ta lại có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

16 tháng 12 2016

Ta có:a+b+c=abc

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Ta lại có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

10 tháng 9 2017

1) VT= \(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xyz}{xyz+z+zx}\)

\(=\frac{1}{1+x+xy}+\frac{xy}{1+x+xy}+\frac{xyz}{z\left(x+xy+1\right)}\)

\(=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}\)

\(=\frac{1+x+xy}{1+x+xy}=1\)

Bài 2 giả thiết trên tử làm mell gì có bình phương, nếu có thì tính làm gì nữa :D, kết quả là 2016(x+y+z)

13 tháng 9 2017

đề b2 sai

30 tháng 8 2020

a)

Dạng Chính Xác:

b)

Dạng Chính Xác: