Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko chép đề bài
A= (2012-1) . (2-1) +1
A= 2012
A= (2012+1) . 2012 :2
A= 2025078
k hộ cái
Công thức:
Số các số hạng là:
(số cuối-số đầu):khoảng cách+1=số hạng
tổng:(số cuối+số đầu)x số hạng:2=k quả
*/ Tổng của 3 số tự nhiên liên tiếp có dạng: a+(a+1)+(a+2)=3a+3=3(a+1) => Luôn chia hết cho 3
*/ 215+424=2.214+2.212=2(214+212) => Luôn chia hết cho 2
*/ \(S1=\frac{2012\left(2012-1\right)}{2}-1-2=2023063\)
*/ \(S2=\frac{2012\left(2012-1\right)}{2}-1=2023065\)
\(A=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)'
\(A=\frac{\left(1+\frac{2012}{2}+1+\frac{2010}{2}+1+...+\frac{1}{2012}+1\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)
\(A=\frac{\left(1+\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)
\(A=\frac{2013\left(\frac{1}{2013}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)
\(\Rightarrow A=2013\)
Giải thích giùm e dấu bằng thứ nhất và hai được ko ạ?
S1 = 1 + (-2) + 3 + (-4) + ... + 2001 + (-2002)
= 1 - 2 + 3 - 4 + ... + 2001 - 2002
= (1 - 2) + (3 - 4) + ... + (2001 - 2002) (Có tất cả số cặp là: [(2002 - 1) : 1 + 1] : 2 = 1001 (cặp))
= (-1) + (-1) +...+ (-1) } 1001 chữ số (-1)
= (-1) . 1001
= (-1001)
S2 = 1 + (-3) + 5 + (-7) +...+ (-1999) + 2001
= 1 - 3 + 5 - 7 + ... - 1999 + 2001
= (1 - 3) + (5 - 7) + ... (1997 - 1999) + 2001 (Có số cặp là: [(1999 - 1):2 + 1] : 2 = 500 (cặp))
= (-2) + (-2) + ... + (-2) + 2001 } 500 số (-2)
= (-2) . 500 + 2001
= -1000 + 2001
= 1001
=
3S1 = 32 - 33 + 34 - 35 + ... - 32013
3S1 + S1 = 3 - 32 + 33 - 34 + ... - 32012 + 32 - 33 + 34 - 35 + ... - 32013
4S1 = 3 - 32013
S1 = \(\frac{3-3^{2013}}{4}\)
tìm 3S1 rồi cộng 3S1 với S1