Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x x - 4/7 = 15/20
(hình như sai đề, tại vì lớp 4 chưa học lũy thừa)
x * 2/7 -2/3 =1/2
x* 2/7 = 1/2 + 2/3
x* 2/7 = 7/6
x= 7/6 : 2/7
x= 49/12
x : 5/4 + 4/5 =2
x: 5/4 = 2 - 4/5
x: 5/4 = 6/5
x= 6/5 * 5/4
x= 3/2
4/3 x 7/8 x 5
= 7/6 x 5
= 35/6
8/9 x 6/5 x 2/3
= 16/15 x 2/3
= 32/45
4/7 : 5/7 x 10/11
= 4/5 x 10/11
= 8/11
8/13 : 7/13 : 4
= 8/7 : 4
= 2/7
\(\frac{3}{5}\times\frac{6}{7}+\frac{3}{5}:7+\frac{6}{5}\)
\(=\frac{3}{5}\times\frac{6}{7}+\frac{3}{5}\times\frac{1}{7}+\frac{6}{5}\)
\(=\frac{3}{5}\times\left(\frac{6}{7}+\frac{1}{7}\right)+\frac{6}{5}\)
\(=\frac{3}{5}\times1+\frac{6}{5}\)
\(=\frac{3}{5}+\frac{6}{5}=\frac{9}{5}\)
~ Hok tốt ~
\(\frac{29}{12}:\frac{1}{2}-\frac{5}{12}:\frac{1}{2}-\frac{1}{2}\)
\(=\left(\frac{29}{12}-\frac{5}{12}\right):\frac{1}{2}-\frac{1}{2}\)
\(=2:\frac{1}{2}-\frac{1}{2}\)
\(=4-\frac{1}{2}=\frac{7}{2}\)
~ Hok tốt ~
Với câu a : \(\frac{1}{2}+\frac{1}{3}\times\frac{1}{6}=\frac{1}{2}+\frac{1}{18}=\frac{9}{18}+\frac{1}{18}=\frac{10}{18}=\frac{5}{9}\)
Ta không chọn câu a vì \(\frac{5}{9}\ne\frac{5}{36}\)khi quy đồng lên thành \(\frac{20}{36}\ne\frac{5}{36}\)
Với câu b : \(\frac{1}{9}+\frac{5}{12}-\frac{7}{18}=\frac{4}{36}+\frac{15}{36}-\frac{14}{36}=\frac{4+15-14}{36}=\frac{5}{36}\)
Ta chọn câu b vì kết quả bằng nhau theo đề bài trên
Còn các câu còn lại đều bị loại
1.
\(\left(572\cdot7+266\right)\cdot\left(366\cdot9-168\cdot18\right)\cdot\left(346\cdot6-348\right)\)
\(=\left(286\cdot7\cdot2+133\cdot2\right)\cdot\left(366\cdot9-168\cdot2\cdot9\right)\cdot\left(173\cdot6\cdot2-174\cdot2\right)\)
\(=\left(2002\cdot2+133\cdot2\right)\cdot\left(366\cdot9-336\cdot9\right)\cdot\left(1038\cdot2-174\cdot2\right)\)
\(=\left[2\cdot\left(2002+133\right)\right]\cdot\left[9\cdot\left(366-336\right)\right]\cdot\left[2\cdot\left(1038-174\right)\right]\)
\(=2\cdot2135\cdot9\cdot30\cdot2\cdot864\)
\(=4270\cdot9\cdot30\cdot2\cdot864\)
\(=\left(4270\cdot30\right)\cdot9\cdot2\cdot864\)
\(=\left(427\cdot10\right)\cdot\left(3\cdot10\right)\cdot9\cdot2\cdot864\)
\(=\left(427\cdot3\right)\cdot\left(10\cdot10\right)\cdot9\cdot2\cdot864\)
\(=1281\cdot100\cdot9\cdot2\cdot864\)
\(=\left(1281\cdot100\right)\cdot\left(9\cdot2\cdot864\right)\)
\(=\left(1281\cdot100\right)\cdot15552\)
\(=\left(1281\cdot15552\right)\cdot100\)
\(=19922112\cdot100\)
\(=1992211200\)
2.
\(\left(1+3+5+7+...+97+9\right)\cdot\left(45\cdot3-15\cdot2-45\right)\)
\(=\left(1+3+5+7+...+97+9\right)\cdot\left(15\cdot3\cdot3-15\cdot2-15\cdot3\right)\)
\(=\left(1+3+5+7+...+97+9\right)\cdot\left[15\cdot\left(3\cdot3\right)-15\cdot2-15\cdot3\right]\)
\(=\left(1+3+5+7+...+97+9\right)\cdot\left(15\cdot9-15\cdot2-15\cdot3\right)\)
\(=\left(1+3+5+7+...+97+9\right)\cdot\left[15\cdot\left(9-2-3\right)\right]\)
\(=\left(1+3+5+7+...+97+9\right)\cdot15\cdot4\)
\(=\left[\left(1+3+5+7+...+97\right)+9\right]\cdot\left(15\cdot4\right)\)
Trong \(\left(1+3+5+7+...+97\right)\) có số số hạng là:
\(\left(97-1\right)\div2+1=49\) ( số hạng )
\(\Rightarrow\left[\left(1+3+5+7+...+97\right)+9\right]\cdot\left(15\cdot4\right)\)
\(=\left[\left(97+1\right)\cdot49\div2\right]\cdot\left(15\cdot4\right)\)
\(=2401\cdot60\)
\(=\left(2401\cdot6\right)\cdot10\)
\(=14406\cdot10\)
\(=144060\)
3.
\(\left(180\div15-132\div11\right)\cdot\left(57869-297\div11\cdot108\right)\)
\(=\left(12-12\right)\cdot\left(57869-297\div11\cdot108\right)\)
\(=0\cdot\left(57869-297\div11\cdot108\right)\)
\(=0\)
Sửa lại bài 2; dòng 11 ( từ đề bài bài 2 ):
\(=\left\{\left[\left(97+1\right)\cdot49\div2\right]+9\right\}\cdot\left(15\cdot4\right)\)
\(=\left(2401+9\right)\cdot\left(15\cdot4\right)\)
\(=2410\cdot\left(15\cdot4\right)\)
\(=2410\cdot60\)
\(=\left(241\cdot10\right)\cdot\left(6\cdot10\right)\)
\(=\left(241\cdot6\right)\cdot\left(10\cdot10\right)\)
\(=1446\cdot10\)
\(=14460\)
Tính nhanh mỗi biểu thức sau:
a, 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20
= (0 + 20) + (1 + 19) + (2 + 18) + (3 + 17) + (4 + 16) + (5 + 15) + (6 + 14) + (7 + 13) + (8 + 12) + (9 + 11) + 10
= 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 10
= 20 x 10 + 10
= 200 + 10
= 210
b, 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (4 x 9 - 36)
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (36 - 36)
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 0
= A x 0
= 0
c, (81 - 7 x 9 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= (81 - 63 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= (18 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= 0 :(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= 0 : A
= 0
d, (6 x 5 + 7 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= (30 + 7 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= (37 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= 0 x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= 0 x A
= 0
e, (11 x 9 - 100 + 1) : (1 x 2 x 3 x 4 x ... x 10)
= (99 - 100 + 1) : (1 x 2 x 3 x 4 x ... x 10)
= (99 + 1 - 100) : (1 x 2 x 3 x 4 x ... x 10)
= (100 - 100) : (1 x 2 x 3 x 4 x ... x 10)
= 0 : (1 x 2 x 3 x 4 x ... x 10)
= 0 : A
= 0
g, (m : 1 - m x 1) : (m x 2008 + m x 2008)
= (m - m) : (m x 2008 + m x 2008)
= 0 : (m x 2008 + m x 2008)
= 0 : A
= 0
h, (2 + 4 + 6 + 8 + m x n) x (324 x 3 - 972)
= (2 + 4 + 6 + 8 + m x n) x (972 - 972)
= (2 + 4 + 6 + 8 + m x n) x 0
= A x 0
= 0
l, (1 + 2 + 3 + ... + 99) x (13 x 15 - 12 x 15 - 15)
= (1 + 2 + 3 + ... + 99) x (15 x (13 - 12 - 1))
= (1 + 2 + 3 + ... + 99) x (15 x 0)
= (1 + 2 + 3 + ... + 99) x 0
= A x 0
= 0
i, (0 x 1 x 2 x...x 99 x 100) : (2 + 4 + 6 +...+ 98)
= 0 x : (2 + 4 + 6 +...+ 98)
= 0 x A
= 0
k, (0 + 1 + 2 +...+ 97 + 99) x (45 x 3 - 45 x 2 - 45)
= (0 + 1 + 2 +...+ 97 + 99) x (45 x (3 - 2 - 4))
= (0 + 1 + 2 +...+ 97 + 99) x (45 x 0)
= (0 + 1 + 2 +...+ 97 + 99) x 0
= A x 0
= 0
a) \(\frac{6}{9}+\frac{5}{7}+\frac{1}{3}\)\(=\frac{2}{3}+\frac{5}{7}+\frac{1}{3}\)\(=\left(\frac{2}{3}+\frac{1}{3}\right)+\frac{5}{7}\)\(=1+\frac{5}{7}=\frac{12}{7}\)
b) \(\frac{17}{7}+\frac{6}{5}-\frac{20}{14}\)\(=\frac{17}{7}+\frac{6}{5}-\frac{10}{7}\)\(=\left(\frac{17}{7}-\frac{10}{7}\right)+\frac{6}{5}\)\(=1+\frac{6}{5}\)\(=\frac{11}{5}\)
c) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{72}\)\(=\frac{36}{72}+\frac{12}{72}+\frac{6}{72}+\frac{1}{72}=\frac{36+12+6+1}{72}=\frac{55}{72}\)
_Chúc bạn học tốt_