Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\dfrac{1\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}{2\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}\cdot\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}+\dfrac{6}{7}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{7}+\dfrac{6}{7}=\dfrac{1}{7}+\dfrac{6}{7}=1\)
b: \(B=2000:\left[\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\cdot\dfrac{-\dfrac{7}{6}+\dfrac{7}{8}-\dfrac{7}{10}}{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}\right]\)
\(=2000:\left[\dfrac{2}{7}\cdot\dfrac{-7}{2}\right]=-2000\)
c: \(C=10101\cdot\left(\dfrac{5}{111111}+\dfrac{1}{111111}-\dfrac{4}{111111}\right)\)
\(=10101\cdot\dfrac{2}{111111}=\dfrac{2}{11}\)
\(A=\dfrac{-\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}+\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)
\(=\dfrac{-2\left(\dfrac{1}{5}+\dfrac{1}{9}-\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}+\dfrac{1}{9}-\dfrac{1}{11}\right)}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}\right)}\)
\(=\dfrac{-2}{7}-1:\dfrac{7}{2}=\dfrac{-2}{7}-\dfrac{2}{7}=-\dfrac{4}{7}\)
\(B=\left(\dfrac{0,4-\dfrac{2}{9}+\dfrac{2}{11}}{1,4-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-0,25+\dfrac{1}{5}}{1\dfrac{1}{6}-0,875+0,7}\right)\cdot\dfrac{1842009}{1842010}\)
\(B=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\right)\cdot\dfrac{1842009}{1842010}\)
\(B=\left[\dfrac{2\cdot\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\cdot\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}-\dfrac{1\cdot\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}\right)}{\dfrac{7}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}\right)}\right]\cdot\dfrac{1842009}{1842010}\)
\(B=\left(\dfrac{2}{7}-1:\dfrac{7}{2}\right)\cdot\dfrac{1842009}{1842010}\)
\(B=\left(\dfrac{2}{7}-\dfrac{2}{7}\right)\cdot\dfrac{1842009}{1842010}\)
\(B=0\cdot\dfrac{1842009}{1842010}=0\)
a: \(=\dfrac{1}{4}\cdot\dfrac{12}{5}\cdot\dfrac{100}{7}\cdot\dfrac{49}{100}\)
\(=\dfrac{1}{4}\cdot\dfrac{12}{5}\cdot\dfrac{49}{7}=\dfrac{3}{5}\cdot7=\dfrac{21}{5}\)
b: \(=\dfrac{3}{8}+\dfrac{1}{8}\cdot\dfrac{3}{4}-\dfrac{5}{4}\)
\(=\dfrac{12}{32}+\dfrac{3}{32}-\dfrac{40}{32}=\dfrac{-25}{32}\)
c: \(=\dfrac{4}{9}\left(\dfrac{-13}{27}-\dfrac{14}{27}\right)-\dfrac{5}{9}=\dfrac{-4}{9}-\dfrac{5}{9}=-1\)
d: \(=\dfrac{2}{4}\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+...+\dfrac{4}{91\cdot95}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{91}-\dfrac{1}{95}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{92}{285}=\dfrac{46}{285}\)
a. \(\dfrac{2^3.5^2.7^2.3^7}{49.5^3.3^6.11}\)
= \(\dfrac{2^3.3}{5.11}=\dfrac{24}{55}\)
b. \(4.\left(\dfrac{-1}{2}\right)^3-2.\left(\dfrac{-1}{2}\right)^2+3\left(\dfrac{-1}{2}\right)+1\)
=\(-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}\)
= 3\(\left(\dfrac{-1}{2}\right)\)
=\(\dfrac{-3}{2}\)
a) \(0,2\cdot\dfrac{15}{36}-\left(\dfrac{2}{5}+\dfrac{2}{3}\right):1\dfrac{1}{5}\)
\(=\dfrac{1}{12}-\dfrac{16}{15}\cdot\dfrac{5}{6}\)
\(=\dfrac{1}{12}-\dfrac{8}{9}\)
\(=\dfrac{-29}{36}\)
b) \(1\dfrac{13}{15}\cdot0,75-\left(\dfrac{8}{15}+0,25\right)\cdot\dfrac{24}{27}\)
\(=\dfrac{28}{15}\cdot0,75-\dfrac{47}{60}\cdot\dfrac{24}{27}\)
\(=\dfrac{7}{5}-\dfrac{94}{135}\)
\(=\dfrac{19}{27}\)
c) \(5:\left(4\dfrac{3}{4}-1\dfrac{25}{28}\right)-1\dfrac{3}{8}:\left(\dfrac{3}{8}+\dfrac{9}{20}\right)\)
\(=5\cdot\dfrac{7}{20}-\dfrac{11}{8}\cdot\dfrac{40}{33}\)
\(=\dfrac{7}{4}-\dfrac{5}{3}\)
\(=\dfrac{1}{12}\)
a)\(\dfrac{2}{3}x-\dfrac{5}{6}=1\dfrac{1}{4}\)
\(\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{5}{4}\)
\(\dfrac{2}{3}x=\dfrac{5}{4}+\dfrac{5}{6}\)
\(\dfrac{2}{3}x=\dfrac{25}{12}\)
\(x=\dfrac{25}{12}:\dfrac{2}{3}\)
=>\(x=\dfrac{25}{8}\)
a) \(\dfrac{2}{3}x-\dfrac{5}{6}=1\dfrac{1}{4}\) b) \(2\dfrac{1}{3}-\dfrac{4}{5}:x=0,2\)
\(\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{5}{4}\) \(\dfrac{7}{3}-\dfrac{4}{5}:x=\dfrac{1}{5}\)
\(\dfrac{2}{3}x=\dfrac{5}{4}-\dfrac{5}{6}\) \(\dfrac{4}{5}:x=\dfrac{7}{3}-\dfrac{1}{5}\)
\(\dfrac{2}{3}x=\dfrac{30}{24}-\dfrac{20}{24}\) \(\dfrac{4}{5}:x=\dfrac{35}{15}-\dfrac{3}{15}\)
\(\dfrac{2}{3}x=\dfrac{5}{12}\) \(\dfrac{4}{5}:x=\dfrac{32}{15}\)
\(x=\dfrac{5}{12}:\dfrac{2}{3}\) \(x=\dfrac{4}{5}:\dfrac{32}{15}\)
\(x=\dfrac{5}{12}:\dfrac{8}{12}\) \(x=\dfrac{4}{5}.\dfrac{15}{32}\)
\(x=\dfrac{5}{12}.\dfrac{12}{8}=\dfrac{5}{8}\) \(x=\dfrac{4.15}{5.32}\)
\(x=\dfrac{1.3}{1.8}=\dfrac{3}{8}\)
d)\(\left(\dfrac{4}{3}-\dfrac{1}{4}x\right)^3=\dfrac{-8}{27}\)
\(\left(\dfrac{4}{3}-\dfrac{1}{4}x\right)^3=\left(\dfrac{-2}{3}\right)^3\)
\(\Rightarrow\dfrac{4}{3}-\dfrac{1}{4}x=\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{1}{4}x=\dfrac{4}{3}-\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{1}{4}x=2\)
\(\Rightarrow x=2:\dfrac{1}{4}\)
\(\Rightarrow x=2.4=8\)
A = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A=\(\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)
B = \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{49.51}\)
B = \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{49}-\dfrac{1}{51}\)
B = \(\dfrac{1}{2}-\dfrac{1}{51}=\dfrac{51}{102}-\dfrac{2}{102}=\dfrac{49}{102}\)
a) \(5.2^4+2.3^3-3,4\)
\(=5.2.2^3+2.3^3-3,4\)
\(=2.40+2.27-3,4\)
\(=2\left(40+37\right)-3,4\)
\(=2.77-4,3\)
\(=154-4,3=149,7\)
b) \(\dfrac{\dfrac{1}{3}-0,25+0,2}{1\dfrac{1}{6}-0,875+0,7}=\dfrac{2\left(\dfrac{1}{6}-0,125+\dfrac{1}{10}\right)}{7\left(\dfrac{1}{6}-0,125+\dfrac{1}{10}\right)}=\dfrac{2}{7}\)
a. \(5.2^4+2.3^3-3,4\)
\(=5.2^3.2+2.27-3,4\)
\(=2.\left(40+27\right)-3,4\)
\(=2.67-3,4\)
= 134 - 3,4 = 130,6