Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{2010}+\frac{1}{6030}.\)
\(\Rightarrow3S=\frac{3}{4}+\frac{3}{12}+\frac{3}{36}+...+\frac{3}{2010}+\frac{3}{6030}\)
\(=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{670}+\frac{1}{2010}\)
\(\Rightarrow3S-S=2S=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{670}+\frac{1}{2010}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{2010}+\frac{1}{6030}\right)\)
\(2S=\frac{3}{4}-\frac{1}{6030}\)
\(\Rightarrow S=\frac{\frac{3}{4}-\frac{1}{6030}}{2}\)
đặt A=1/4+1/12+1/36+........+1/6030
3A=1+1/4+1/12+.........+1/2010
-2A=1/6030-1
A=(1/6030-1)/-2
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(3A=3\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(3A=\frac{3}{4}+\frac{3}{12}+\frac{3}{36}+\frac{3}{108}+\frac{3}{324}+\frac{3}{927}\)
\(3A=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(2A=3A-A\)
\(2A=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(2A=\frac{3}{4}-\frac{1}{927}\)
\(2A=\frac{729-1}{972}=\frac{728}{972}=\frac{182}{243}\)
\(A=\frac{182}{243}:\frac{1}{2}\)
\(A=\frac{364}{243}\)
Hình như đề bài phải là : Tính tổng : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)
Nếu thế giải như sau : \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}.\)Vậy tổng đó là 2010/2011.
Ta có :\(\frac{1}{1}:2+\frac{1}{2}:3+...+\frac{1}{2010}:2011\)
= \(\frac{1}{1}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{2010}\times\frac{1}{2011}\)
= \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2010\times2011}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
= \(1-\frac{1}{2011}\)
= \(\frac{2010}{2011}\)
mk ko bjt có đúng ko
=1/(2+18+14+16+36+64)
=1/(20+30+100)
=1/150
=1/150
=tự tính nhé