Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\dfrac{1}{21}\right)\left(1-\dfrac{1}{28}\right)...\left(1-\dfrac{1}{1326}\right)\)
\(=\left(1-\dfrac{2}{42}\right)\left(1-\dfrac{2}{56}\right)\left(1-\dfrac{2}{72}\right)...\left(1-\dfrac{2}{2652}\right)\)
\(=\dfrac{40}{42}.\dfrac{54}{56}.\dfrac{70}{72}...\dfrac{2650}{2652}\)
\(=\dfrac{5.8}{6.7}.\dfrac{6.9}{7.8}.\dfrac{7.10}{8.9}...\dfrac{50.53}{51.52}\)
\(=\dfrac{5.6.7...50}{6.7.8...51}.\dfrac{8.9.10...53}{7.8.9...52}\)
\(=\dfrac{5}{51}.\dfrac{53}{7}=\dfrac{265}{357}\)
Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)
\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)
\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)
Vậy \(A=\dfrac{-5}{12}.\)
\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)
\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)
\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)
\(C=2-\dfrac{1}{2^{2016}}\)
a: \(=\dfrac{13\left(3-18\right)}{40\left(15-2\right)}=\dfrac{13}{15-2}\cdot\dfrac{-15}{40}=\dfrac{-3}{8}\)
b: \(=\dfrac{18\left(34-124\right)}{36\left(-17-13\right)}=\dfrac{1}{2}\cdot\dfrac{-90}{-30}=\dfrac{3}{2}\)
c: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}+\dfrac{\dfrac{-1}{4}\cdot\dfrac{-2}{3}-\dfrac{3}{4}:\dfrac{1}{6}}{\dfrac{3}{2}\cdot\left(\dfrac{-2}{3}-\dfrac{3}{4}\cdot\dfrac{-2}{3}\right)}\)
\(=\dfrac{3}{4}+\dfrac{\dfrac{2}{12}-\dfrac{9}{2}}{\dfrac{3}{2}\cdot\dfrac{-1}{6}}=\dfrac{3}{4}+\dfrac{-13}{3}:\dfrac{-3}{12}=\dfrac{3}{4}+\dfrac{13}{3}\cdot\dfrac{12}{3}\)
\(=\dfrac{3}{4}+\dfrac{156}{9}=\dfrac{217}{12}\)
a) \(A=1-2+2^2-2^3+2^4-2^5+.................+2^{2016}\)
\(\Rightarrow2A=2\left(1-2+2^2-2^3+2^4-2^5+............+2^{2016}\right)\)
\(\Rightarrow2A=2-2^2+2^3-2^4+2^5-2^6+...........+2^{2017}\)
\(\Rightarrow2A-A=\left(2-2^2+2^3-2^4+.........+2^{2016}\right)-\left(1-2+2^3+2^4-2^5+.....+2^{2017}\right)\)\(\Rightarrow A=2^{2017}-1\)
Câu a xong đã, câu b tính sau :P
a) \(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
\(=5\dfrac{4}{23}.27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right).5\dfrac{4}{23}\)
\(=5\dfrac{4}{23}.\left[27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right)\right]\)
\(=5\dfrac{4}{23}.\left(27\dfrac{3}{47}-4\dfrac{3}{27}\right)\)
\(=5\dfrac{4}{23}.23\)
\(=\dfrac{119}{23}.23\)
\(=\dfrac{119}{23}\)
b) \(4.\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
\(=4.\dfrac{-1}{6}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{3}{2}\)
\(=\dfrac{-2}{3}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{9}{6}\)
\(=\dfrac{5}{6}\)
c) \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
\(=\dfrac{1999}{2011}-\dfrac{2011}{1999}-\dfrac{-12}{1999}+\dfrac{12}{2011}\)
\(=\left(\dfrac{1999}{2011}+\dfrac{12}{2011}\right)-\left(\dfrac{2011}{1999}+\dfrac{-12}{1999}\right)\)
\(=\dfrac{2011}{2011}-\dfrac{1999}{1999}\)
\(=1-1\)
\(=0\)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
(đợi đã, mình chưa tìm được hướng làm...)
\(\left(1-\dfrac{28}{10}\right)\left(1-\dfrac{52}{22}\right)\left(1-\dfrac{80}{36}\right)...\left(1-\dfrac{21808}{10900}\right)\)
\(=\left(1-\dfrac{2.10+8}{10}\right)\left(1-\dfrac{2.22+8}{22}\right)\left(1-\dfrac{2.36+8}{36}\right)...\left(1-\dfrac{2.10900+8}{10900}\right)\)
\(=\left(1-2-\dfrac{8}{10}\right)\left(1-2-\dfrac{8}{22}\right)\left(1-2-\dfrac{8}{36}\right)...\left(1-2-\dfrac{8}{10900}\right)\)
\(=\left(-1-\dfrac{8}{1.10}\right)\left(-1-\dfrac{8}{2.11}\right)\left(-1-\dfrac{8}{3.12}\right)...\left(-1-\dfrac{8}{100.109}\right)\)
\(=\left(\dfrac{-18}{1.10}\right)\left(\dfrac{-30}{2.11}\right)\left(\dfrac{-44}{3.12}\right)...\left(\dfrac{-10908}{100.109}\right)\)
\(=\left(\dfrac{-2.9}{1.10}\right)\left(\dfrac{-3.10}{2.11}\right)\left(\dfrac{-4.11}{3.12}\right)...\left(\dfrac{-101.108}{100.109}\right)\)
\(=\dfrac{\left(-2\right)\left(-3\right)\left(-4\right)...\left(-101\right)}{1.2.3...100}.\dfrac{9.10.11...108}{10.11.12...109}\) (1)
\(=\dfrac{101}{1}.\dfrac{9}{109}=\dfrac{909}{109}\)
Do ở (1) có \(-2-\left(-101\right)+1=100\) nhân tử (số nhân tử là số chẵn) mang dấu âm nên kết quả sẽ mang dấu dương