Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)
Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là 24 khi x=2.
b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)
Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)
Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0
a: Trường hợp 1: x=1/2
\(A=2\cdot\dfrac{1}{4}-3\cdot\dfrac{1}{2}+5=\dfrac{1}{2}-\dfrac{3}{2}+5=3\)
Trường hợp 2: x=-1/2
\(A=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}+5=\dfrac{1}{2}+\dfrac{3}{2}+5=2+5=7\)
b: Trường hợp 1: x=1/2; y=1
\(B=2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot\dfrac{1}{2}\cdot1+1^2=\dfrac{1}{2}-\dfrac{3}{2}+1=-1+1=0\)
Trường hợp 2: x=1/2; y=-1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{1}{2}\cdot\left(-1\right)+1=3\)
Trường hợp 3: x=-1/2; y=1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}\cdot1+1=\dfrac{1}{2}+\dfrac{3}{2}+1=3\)
Trường hợp 4: x=-1/2; y=-1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}\cdot\left(-1\right)+1=\dfrac{1}{2}-\dfrac{3}{2}+1=0\)
A = (x^2 - 9)^2 + |y - 2| + 10
có (x^2 - 9)^2 > 0; |y - 2| > 0
=> (x^2 - 9)^2 + |y - 2| > 0
=> (x^2 - 9)^3 + |y - 2| + 10 > 10
=> A > 10
=> Min A = 10
dấu = xảy ra khi :
(x^2 - 9)^2 = 0 và |y - 2| = 0
=> x^2 - 9 = 0 và y - 2 = 0
=> x^2 = 9 và y = 2
=> x = + 3 và y = 2
nhận thấy : (x^2-9)^2 >=0
|y-2|>=0
=> biểu thức (x^2-9)+|y-2|>=0
=>(x^2-9)+|y-2|+10>=10
=>GTNN của biểu thức là 10 khi
(x^2-9)^2=0<=>x^2-9=0<=>x=+-3
|y-2|=0 <=> y=2
Vậy giá trị nhỏ nhất của biểu thức là 10 khi x=3 ;y=2 và x=-3 và y=2
\(87^2-13^2=6555\)
\(=\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)