Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{327\cdot412+400}{328\cdot412-12}=\frac{327\cdot412+400}{\left(327+1\right)\cdot412-12}=\)\(\frac{327\cdot412+400}{327\cdot412+1\cdot412-12}=\frac{327\cdot412+400}{327\cdot412+412-12}=\)\(\frac{327\cdot412+400}{327\cdot412+400}=\frac{1}{1}=1\)
\(\frac{327.412+400}{328.412-12}\) = \(\frac{328.412-412+400}{328.412-12}\)= \(\frac{328.412-\left[412-400\right]}{328.412-12}\) = \(\frac{328.412-12}{328.412-12}\) = 1
a) \(15\times\left(\frac{212121}{434343}+\frac{333333}{353535}\right)=15\times\left(\frac{21\times10101}{43\times10101}+\frac{33\times10101}{35\times10101}\right)\)
\(=15\times\left(\frac{21}{43}+\frac{33}{35}\right)=\frac{6462}{301}\)
b) \(\frac{639\times721721}{721\times639639}=\frac{639\times721\times1001}{721\times639\times1001}=1\)
c) \(\frac{327\times412+400}{328\times412-12}=\frac{\left(328-1\right)\times412+400}{328\times412-12}=\frac{328\times412-412+400}{328\times412-12}\)
\(=\frac{328\times412-12}{328\times412-12}=1\)
d) \(9\times\left(\frac{151515}{171717}+\frac{131313}{181818}\right)=9\times\left(\frac{15\times10101}{17\times10101}+\frac{13\times10101}{18\times10101}\right)=9\times\left(\frac{15}{17}+\frac{13}{18}\right)\)
\(=9\times\frac{491}{306}=\frac{491}{34}\)
a) \(\left(\frac{4}{3}-\frac{4}{6}\right)+\left(\frac{4}{6}-\frac{4}{9}\right)+\left(\frac{4}{9}-\frac{4}{10}\right)+\left(\frac{4}{12}-\frac{4}{15}\right)\)
\(=\frac{4}{15}-\frac{4}{3}=\frac{-16}{15}\)
C) bạn chỉ ần bỏ các số giống nhau thôi nhé
= 1
b)
Đặt biểu thức trên là A ta có:
A = \(\frac{1}{3}\)+ \(\frac{1}{6}\)+ \(\frac{1}{12}\)+ \(\frac{1}{24}\)+ \(\frac{1}{48}\)+ \(\frac{1}{96}\)
A x 3 = \(1\)+ \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ \(\frac{1}{8}\)+ \(\frac{1}{16}\)+ \(\frac{1}{32}\)
A x 3 = \(1\)+ \(1\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{8}\)+ \(\frac{1}{8}\)- \(\frac{1}{16}\)+ \(\frac{1}{16}\)- \(\frac{1}{32}\)
A x 3 = 2 - \(\frac{1}{32}\)= \(\frac{63}{32}\)
A = \(\frac{63}{32}\): 3 = \(\frac{63}{96}\)
a) \(\frac{37}{25}+\frac{11}{21}-\frac{12}{25}+\frac{10}{21}\)
= \(\left(\frac{37}{25}-\frac{12}{25}\right)+\left(\frac{11}{21}+\frac{10}{21}\right)\)
= 1 + 1
= 2
\(\frac{37}{25}+\frac{11}{21}-\frac{12}{25}+\frac{10}{21}\)
=\(\left(\frac{37}{25}-\frac{12}{25}\right)+\left(\frac{11}{21}+\frac{11}{21}\right)\)
= 1 + 1 = 2 .
\(\frac{327\cdot412+400}{328\cdot412-12}\)
\(=\frac{327\cdot412+400}{\left(327+1\right)\cdot412-12}\)
\(=\frac{327\cdot412+400}{327\cdot412+\left(412-12\right)}\)
\(=\frac{327\cdot412+400}{327\cdot412+400}\)
\(=1\)
327.412+400 / 328.412-12
= 327.412+400 / (327+1).412-12
= 327.412+400 / 327.412+1.412-12
= 327.412+400 / 327.412+412-12
= 400/412-12
= 400/400
= 1