Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(=\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\right)\cdot5\cdot\frac{1}{5}\)
\(=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(1+1-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(2-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\frac{511}{256}\cdot\frac{1}{5}\)
\(=\frac{511}{1280}\)
\(\frac{10}{18}+\frac{4}{9}+\frac{26}{10}+\frac{12}{5}+\frac{9}{15}\)
\(=\frac{5}{9}+\frac{4}{9}+\frac{13}{5}+\frac{12}{5}+\frac{3}{5}\)
\(=\left(\frac{5}{9}+\frac{4}{9}\right)+\left(\frac{13}{5}+\frac{12}{5}+\frac{3}{5}\right)\)
\(=1+\frac{28}{5}\)
\(=\frac{33}{5}\)
Ta có:
a) \(\frac{10}{18}+\frac{4}{9}+\frac{26}{10}+\frac{12}{5}+\frac{9}{15}=\frac{5}{9}+\frac{4}{9}+\frac{13}{5}+\frac{12}{5}+\frac{9}{15}=1+1+\frac{9}{15}=1\frac{9}{15}\)
b)\(\frac{10}{18}+\frac{4}{9}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=\left(\frac{5}{9}+\frac{4}{9}\right)+\left(\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\right)\)
\(=1+\frac{31}{128}=1\frac{31}{128}\)
b
Q=\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{9900}\)
Rồi giải tương tự như câu a là được
M=\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}=\frac{99}{20}\)
a,(11/15+4/15)+(5/7+2/7)
=1+1
=2
b,5/9x(1/2+6/4)
=5/9x2
=10/9
c,1/2:(7/8+9/8)
=1/2:2
=1
d,(17/10-7/10)+1/2
=1+1/2
=3/2
a) \(\frac{11}{15}+\frac{5}{7}+\frac{2}{7}+\frac{4}{15}=\left(\frac{11}{15}+\frac{4}{15}\right)+\left(\frac{5}{7}+\frac{2}{7}\right)\)
\(=2\)
b) \(\frac{5}{9}\times\frac{1}{2}\times\frac{5}{9}\times\frac{6}{4}=\frac{25}{81}\times\frac{3}{4}=\frac{25}{108}\)
c) \(\frac{7}{8}\div\frac{1}{2}+\frac{9}{8}\div\frac{1}{2}=\left(\frac{7}{8}+\frac{9}{8}\right)\div\frac{1}{2}\)
\(=2\div\frac{1}{2}=4\)
d) \(\frac{17}{10}+\frac{1}{2}-\frac{7}{10}=\left(\frac{17}{10}-\frac{7}{10}\right)+\frac{1}{2}\)
\(=1+\frac{1}{2}=\frac{3}{2}\)
a) \(\frac{11}{15}+\frac{5}{7}+\frac{2}{7}+\frac{4}{15}\)
\(=\left(\frac{11}{15}+\frac{4}{15}\right)+\left(\frac{5}{7}+\frac{2}{7}\right)\)
\(=1+1\)
\(=2\)
b) \(\frac{5}{9}.\frac{1}{2}.\frac{5}{9}.\frac{6}{4}\)
\(=\left(\frac{5}{9}\right)^2\left(\frac{1}{2}.\frac{6}{4}\right)\)
\(=\frac{25}{81}.\frac{3}{4}\)
\(=\frac{25}{108}\)
c) \(\frac{7}{8}:\frac{1}{2}+\frac{9}{8}:\frac{1}{2}\)
\(=\frac{7}{8}.2+\frac{9}{8}.2\)
\(=2\left(\frac{7}{8}+\frac{9}{8}\right)\)
\(=2.\frac{16}{8}\)
\(=2.2\)
\(=4\)
d) \(\frac{17}{10}+\frac{1}{2}-\frac{7}{10}\)
\(=\left(\frac{17}{10}-\frac{7}{10}\right)+\frac{1}{2}\)
\(=1+\frac{1}{2}\)
\(=\frac{2}{2}+\frac{1}{2}\)
\(=\frac{3}{2}\)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/90 + 1/110 = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + ... + 1/9.10 + 1/10.11 = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/9 - 1/10 + 1/10 - 1/11 = 1/2 - 1/11 = 9/22
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
=\(\frac{1}{2}-\frac{1}{11}\)
=\(\frac{9}{22}\)
Đặt biểu thức trên là A
\(5A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
Đặt \(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+..+\frac{1}{128}\)
\(2B=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\)
\(B=2B-B=1-\frac{1}{128}=\frac{127}{128}\)
\(5A=1+\frac{127}{128}=\frac{255}{128}\Rightarrow A=\frac{5A}{5}=\frac{51}{128}\)
Nguyễn Ngọc Anh Minh đúng rồi