Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x+1}{3}=\frac{5}{2}\)
\(2x+1=\frac{5.3}{2}=\frac{15}{2}\)
2x= 15/2 - 1 = 13/2
x = 13/2 : 2
x = 13/4
b) 2x + 2x+1 + 2x+2 + 2x+3 = 480
2x.(1+ 2 +22 + 23) = 480
2x . 15 = 480
2x = 480 : 15 = 32
2x = 25 => x = 5
c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\)
\(\frac{3x}{7}+1=\frac{-1}{28}.\left(-4\right)=\frac{1}{7}\)
\(\frac{3x}{7}=\frac{1}{7}-1=-\frac{6}{7}\)
< = > 3x= -6 => x = -2
minh lam bai nay roi nhung minh ko co nha nen minh ko nho
x | 7 | 9 | |||
x2 | 49 | 81 | |||
x2-49 | - | 0 | + | + | + |
x2-81 | - | - | - | 0 | + |
A | + | 0 | - | 0 | + |
dựa vào bảng ta có khi 7<x<9 thì A<0 vậy 7<x<9
b, ta có : \(\frac{2015}{1}\)+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+......+\(\frac{1}{2015}\)
=1+1+1+1......+1+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+.......+\(\frac{1}{2015}\)
(2015 số 1)
=1+(1+\(\frac{2014}{2}\))+(1+\(\frac{2013}{3}\))+........+(1+\(\frac{1}{2015}\))
=\(\frac{2016}{2016}\)+\(\frac{2016}{2}\)+\(\frac{2016}{3}\)+.........+\(\frac{2016}{2015}\)
=2016(\(\frac{1}{2016}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+.........+\(\frac{1}{2015}\))
a) ta có: \(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\)<=> \(\frac{1}{x}=\frac{1}{3}+\frac{y}{6}\)
<=> \(\frac{1}{x}=\frac{2+y}{6}\)<=> \(x\left(2+y\right)=6\)
Mà x, y nguyên => x và y+2 \(\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
thay vào ta tìm được các cặp x,y.
b) Ta có: \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)<=> \(\frac{3}{y}=\frac{5}{4}-\frac{x}{2}\)
<=> \(\frac{3}{y}=\frac{5-2x}{4}\)
<=> \(y\left(5-2x\right)=12\)
vì x,y nguyên , 5-2x luôn lẻ => 5-2x \(\inƯ_{\left(12\right)}=\left\{\pm1;\pm3\right\}\)
Thay vào ta tìm được các cặp x,y.
Ta có :
(x+1)/2009 + (x+2)/2008 = (x+3)/2007 + (x+4)/2006
<=> (x+1)/2009 + 1 + (x+2)/2008 + 1 = (x+3)/2007 +1 + (x+4)/2006 + 1
<=> (x+2010)/2009 + (x+2010)/2008 = (x+2010)/2007 + (x+2010)/2006
<=> (x + 2010).[ 1/2009 + 1/2008 - 1/2007 - 1/2006 ] = 0
<=> x = -2010
a.\(\frac{1}{6}.6^x+6^x.36=6^{15}\left(1+6^3\right)\)
\(6^x.\frac{217}{6}=6^{15}.217\)
\(6^x=6^{16}\)
\(x=16\)
\(1+\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}\)
Đặt : \(A=\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}\)
\(B=1\)
\(\Rightarrow A=5.\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\right)\)
\(\Rightarrow A=\frac{5}{2}.\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(\Rightarrow A=\frac{5}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(\Rightarrow A=\frac{5}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(\Rightarrow A=\frac{5}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(\Rightarrow A=\frac{5}{2}.\frac{10}{39}\)
\(\Rightarrow A=\frac{50}{78}=\frac{25}{39}\)
Thay vào , ta có :
\(=1+\frac{25}{39}=\frac{39}{39}+\frac{25}{39}=\frac{64}{39}\)
Vậy giá trị biểu thức trên là \(\frac{64}{39}\)
\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{3}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{1}-\frac{1}{6}\)
\(=\frac{5}{6}\)