\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}+\frac{4}{5}+\frac{2}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

a,Ta có \(\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{1-\frac{2}{3}-\frac{1}{2}}-\frac{\frac{3}{5}-\frac{3}{7}-\frac{3}{11}}{\frac{6}{5}-\frac{6}{7}-\frac{6}{11}}\)

\(=\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{2.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)}-\frac{3.\left(\frac{1}{5}-\frac{1}{7}-\frac{1}{11}\right)}{6.\left(\frac{1}{5}-\frac{1}{7}-\frac{1}{11}\right)}\)

=\(\frac{1}{2}-\frac{3}{6}=\frac{1}{2}-\frac{1}{2}=0\)

Vậy giá trị biểu thức bằng 0

b, Mình không hiểu cho lắm ạ , nếu ko phiền xin xem lại đầu bài ạ

26 tháng 4 2017

kazuto kirigaya thật là bt làm ko đó ko bt thì nói đi còn bt thì làm đi

26 tháng 4 2017

trời ơi bài dễ thế này tự làm đi còn hỏi

30 tháng 4 2019

\(\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

\(=\left(\frac{9}{24}+-\frac{18}{24}+\frac{14}{24}\right):\frac{5}{6}+\frac{1}{2}\)

\(=\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)

\(=\frac{5}{24}.\frac{6}{5}+\frac{1}{2}\)

\(=\frac{1}{4}+\frac{1}{2}\)

\(=\frac{1}{4}+\frac{2}{4}\)

\(=\frac{3}{4}\)

30 tháng 4 2019

\(\frac{1}{2}+\frac{3}{4}-\left(\frac{3}{4}-\frac{4}{5}\right)\)

\(=\frac{1}{2}+\frac{3}{4}-\left(\frac{15}{20}-\frac{16}{20}\right)\)

\(=\frac{1}{2}+\frac{3}{4}-\frac{-1}{20}\)

\(=\frac{10}{20}+\frac{15}{20}-\frac{-1}{20}\)

\(=\frac{25}{20}-\frac{-1}{20}\)

\(=\frac{26}{20}\)

\(=\frac{13}{10}\)

11 tháng 4 2019

A và B dễ 

Bài 2:

sai đề bài vì ngay từ cái phép tính đầu đã ko theo quy luật rồi 

11 tháng 4 2019

\(A=\frac{-3}{5}-\frac{2}{5}+2\)

\(A=-1+2=1\)

\(B=\left(6-\frac{14}{5}\right).\frac{25}{8}-\frac{8}{5}=\frac{1}{4}\)

nÀ NÍ sao lại = đây là dấu trừ hay cộng 1/4

11 tháng 8 2019

Đặt P = ... ( biểu thức đề bài ) 

Nhận xét: Với \(k\inℕ^∗\) ta có: 

\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)

\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)

19 tháng 4 2019

a) \(3^4.\left(-4\right)^2=3^4.4^2=3^4.2^4=\left(3.2\right)^4=6^4\)

b) \(=1\frac{3}{5}+\left(6+\frac{5}{11}-4-\frac{5}{11}\right).\frac{1}{5}=1+\frac{3}{5}+2.\frac{1}{5}=2\)

c)\(=4.\left(0,75-0,25\right)=4.0,5=2\)

d) \(=\frac{\frac{1}{3}+\frac{3}{4}+\frac{3}{2}}{\frac{1.4}{3.4}+\frac{3.3}{4.3}+\frac{3.6}{2.6}}=\frac{\frac{1}{3}+\frac{3}{4}+\frac{3}{2}}{\frac{1}{3}+\frac{3}{4}+\frac{3}{2}}=1\)