\(\dfrac{1212\cdot131313}{121212\cdot1313}\)

Help me !!!!!!!...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

\(\frac{121212+12121212-1212}{363636-36363636-3636}=\frac{12\left(111111+11111111-1111\right)}{36\left(111111+11111111-1111\right)}=\frac{12}{36}=\frac{1}{3}\)

25 tháng 5 2018

1/3 nha

13 tháng 7 2017

a)Ta có : \(\dfrac{1212}{1414}=\dfrac{12.101}{14.101}=\dfrac{12}{14}\)

\(\dfrac{121212}{242424}=\dfrac{12.10101}{24.10101}=\dfrac{12}{24}\)

Vậy \(\dfrac{12}{24}=\dfrac{1212}{2424}=\dfrac{121212}{242424}\)

13 tháng 7 2017

Ta có : \(\dfrac{2424}{3535}=\dfrac{24.101}{35.101}=\dfrac{24}{35}\)

\(\dfrac{242424}{353535}=\dfrac{24.10101}{35.10101}=\dfrac{24}{35}\)

Vậy \(\dfrac{24}{35}=\dfrac{2424}{3535}=\dfrac{242424}{353535}\)

22 tháng 3 2017

Gọi \(\dfrac{12}{23}+\dfrac{12}{2323}-\dfrac{121212}{232323}\) là A

Ta sẽ tính biểu thức A.\(\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{7}{12}\right)\)=A.\(\left(\dfrac{7}{12}-\dfrac{7}{12}\right)=0\)

Vậy \(\left(\dfrac{12}{23}+\dfrac{12}{2323}-\dfrac{121212}{232323}\right).\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{7}{12}\right)\)=0

6 tháng 5 2017

a) ( -18 + 25 ) - ( 125 -18 + 25 )

= -18 + 25 - 125 -18 -25

= ( -18 - 18) + ( 25 - 25 ) - 125

= - 36 + 0 - 125

= 161

6 tháng 5 2017

b,(1/3-1/4-1/12)x(1/2011-1/2012)

=0x(1/2011-1/2012)

=0

23 tháng 5 2017

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)

\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)

23 tháng 5 2017

\(a,\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

5 tháng 5 2017

3/1600

6 tháng 5 2017

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2009.2011}\)

\(A=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2009.2011}\right)\)

\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)

\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{2011}\right)\)

\(A=\dfrac{1}{2}.\dfrac{2010}{2011}\)

\(A=\dfrac{1005}{2011}\)

6 tháng 5 2017

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2009.2011}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2009.2011}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{2}.\dfrac{2010}{2011}\)

\(=\dfrac{1005}{2011}\)

Vậy \(A=\dfrac{1005}{2011}\)

6 tháng 4 2017

\(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{\left(3x+1\right).\left(3x+4\right)}\)=\(\dfrac{1344}{2017}\)

\(A=\dfrac{2}{3}(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{3x+1}-\dfrac{1}{3x+4}\))=\(\dfrac{1344}{2017}\)

\(A=\dfrac{2}{3}(1-\dfrac{1}{3x+4})\)=\(\dfrac{1344}{2017}\)

\(A=1-\dfrac{1}{3x+4}=\dfrac{1344}{2017}:\dfrac{2}{3}\)

\(A=1-\dfrac{1}{3x+4}=\dfrac{2016}{2017}\)

\(A=\dfrac{1}{3x+4}=1-\dfrac{2016}{2017}\)

\(A=\dfrac{1}{3x+4}=\dfrac{1}{2017}\)

\(\Rightarrow\)\(3x+4=2017\)

\(3x=2017-4\)

\(3x=2013\)

\(x=671\)

\(\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\)

\(\rightarrowđpcm\)

6 tháng 4 2017

Mik cần từ lâu òi , pn trả lời muộn quá !! Nhưng cảm ơn pn na !!!vui

26 tháng 3 2017

Ngại làm lắm