\(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

\(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{999}.\dfrac{1}{1000}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\\ =1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

5 tháng 4 2017

ta có

1/1.1/2=1-1/2

1/2.1/3=1/2-1/3

1/3.1/4=1/3-1/4

............

1/999.1/1000=1/999-1/1000

Từ đó suy ra

1/1.1/2+1/2-1/3+1/3+.......+1/998.1/999+1/999.1/1000

=1/1-1/2+1/2-1/3+1/3-.....+1/998-1/999+1/999-1/1000

=1-1/1000

=1000/1000-1/1000

=999/1000

nhớ like bạn nhéhihi

25 tháng 4 2017

Bài 1: a) Ta có : \(\dfrac{-3}{x}=\dfrac{x}{-27}\Leftrightarrow\left(-3\right).\left(-27\right)=x.x\Leftrightarrow81=x^2\Leftrightarrow9^2=x^2\Leftrightarrow x=9\)

b) Do \(\dfrac{2}{3}\) của x là -150 nên x là: (-150) : \(\dfrac{2}{3}\) = -225

c) \(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+2}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{2}-\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{18}\)

\(\Leftrightarrow x+2=18\)

\(\Leftrightarrow x=16\)

Bài 2:

\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\)

\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right).0\)

\(A=0\)

30 tháng 7 2017

Q=\(\dfrac{1}{2}\).\(\dfrac{2}{3}\).\(\dfrac{3}{4}\)...\(\dfrac{998}{999}\).\(\dfrac{999}{1000}\)

Q=\(\dfrac{1.2.3...998.999}{2.3.4....999.1000}\)

=>Q=\(\dfrac{1}{1000}\)

18 tháng 6 2018

\(M=\dfrac{8}{3}\cdot\dfrac{2}{5}\cdot\dfrac{3}{8}\cdot10\cdot\dfrac{19}{92}\\ =\dfrac{8\cdot2\cdot3\cdot10\cdot19}{3\cdot5\cdot8\cdot92}\\ =\dfrac{8\cdot2\cdot3\cdot2\cdot5\cdot19}{3\cdot5\cdot8\cdot2\cdot2\cdot23}\\ =\dfrac{19}{23}\)

\(N=\dfrac{5}{7}\cdot\dfrac{5}{11}+\dfrac{5}{7}\cdot\dfrac{2}{11}-\dfrac{5}{7}\cdot\dfrac{14}{11}\\ =\dfrac{5}{7}\cdot\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\\ =\dfrac{5}{7}\cdot\left(-\dfrac{7}{11}\right)\\ =-\dfrac{5}{11}\)

\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot0\\ =0\)

Tính giá trị biểu thức : 1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\) 2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\) 3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\) 4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\) 5....
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)

2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)

4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)

5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)

7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)

9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)

10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)

11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)

12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)

13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)

14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)

15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)

16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)

2
27 tháng 11 2017

1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)

3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)

4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)

29 tháng 4 2022

hôi lì sít

21 tháng 4 2017

1/3+1/6+1/10+...+2/x(x+1)=998/1000

2/6+2/12+2/20+...+2/x(x+1)=998/1000

2[1/2.3+1/3.4+1/4.5+...+1/x(x+1)]=998/1000

2[1/2-1/3+1/3-1/4+1/4-1/5+...+1/x+1/(x+1)]=998/1000

2.[1/2-1/(x+1)]=998/1000

1/2-1/(x+1)=499/1000

1/(x+1)=1/2-499/1000

1/(x+1)=1/1000

=> x=999

21 tháng 4 2017

tốc độ ánh sáng hà trời

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}<...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

15 tháng 5 2017

a) \(1-\dfrac{1}{2}=\dfrac{1}{2}\)

\(\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{3-2}{6}=\dfrac{1}{6}\)

\(\dfrac{1}{3}-\dfrac{1}{4}=\dfrac{4-3}{12}=\dfrac{1}{12}\)

\(\dfrac{1}{4}-\dfrac{1}{5}=\dfrac{5-4}{20}=\dfrac{1}{20}\)

\(\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{6-5}{30}=\dfrac{1}{30}\)

b) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)

\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)\)

\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+-\dfrac{1}{6}\)\(=1+-\dfrac{1}{6}\)

\(=\dfrac{5}{6}\)

3 tháng 5 2018

Giải sách bà i tập Toán 6 | Giải bà i tập Sách bà i tập Toán 6