K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1 2024

Em kiểm tra lại số hạng đầu tiên, 1/x^21 chắc chắn là sai đề rồi

14 tháng 2 2018

 ĐKXĐ:    \(x\ne-1;\) \(x\ne-3;\)\(x\ne-5;\)\(x\ne-7\)

           \(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)

 \(\Leftrightarrow\)\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)

\(\Leftrightarrow\)\(\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}\right)=\frac{3}{16}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}-\frac{1}{x+7}=\frac{3}{8}\)

\(\Leftrightarrow\)\(\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{3}{8}\)

\(\Rightarrow\)\(3\left(x+1\right)\left(x+7\right)=48\)

\(\Leftrightarrow\)\(x^2+8x+7=16\)

\(\Leftrightarrow\)\(x^2+8x-9=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=9\left(TMĐKXĐ\right)\end{cases}}\)

Vậy...

14 tháng 2 2018

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)

\(\Leftrightarrow\frac{1}{x^2+x+3x+3}+\frac{1}{x^2+3x+5x+15}+\frac{1}{x^2+5x+7x+35}=\frac{3}{16}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)

\(\Leftrightarrow\frac{\left(x+5\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}+\frac{\left(x+1\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}\)

\(=\frac{3\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}\)

Mẫu của mỗi phân thức bằng nhau nên => tử của mỗi phân thức cũng phải bằng nhau

=> Đến đây thì dễ rồi, bạn giải ra tìm x

8 tháng 9 2021

\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)

Bài 1: 

a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)

\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)

\(\Leftrightarrow4x=8\)

hay x=2

b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)

\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)

\(\Leftrightarrow16x^3-8x^2+7x^3=15\)

\(\Leftrightarrow23x^3-8x^2-15=0\)

\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)

\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

27 tháng 3 2020

https://olm.vn/hoi-dap/detail/64195114200.html

Bn dưới trl r!!

Chúc bn hc tốt!!

26 tháng 7 2018

xin lỗi nha, bài đó bằng có một cái 1/5 thôi, tại viết sai

26 tháng 7 2018

ĐK : \(X\ne-1;-3;-7;-9\)

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\)

\(\frac{1}{\left(x+2\right)^2-1}+\frac{1}{\left(x+4\right)^2-1}+\frac{1}{\left(x+6\right)^2-1}+\frac{1}{\left(x-8\right)^2-1}=\frac{1}{5}\)

\(\frac{1}{\left(x+2-1\right)\left(x+2+1\right)}+\frac{1}{\left(x+4-1 \right)\left(x+4+1\right)}+\frac{1}{\left(x+6-1\right)\left(x+6+1\right)}+\frac{1}{\left(x+8-1\right)\left(x+8+1\right)}=\frac{1}{5}\)

\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)

\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+....-\frac{1}{x+9}\right)=\frac{1}{5}\)

\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+9}\right)=\frac{1}{5}\)

\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{1}{5}:\frac{1}{2}=\frac{2}{5}\)

\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)

\(2\left(x+1\right)\left(x+9\right)=40\)

\(2x^2+20x+18=40\Leftrightarrow x^2+10x+9=20\)

\(\Leftrightarrow x^2+10x-11=0\Leftrightarrow x^2+10x-10-1=0\)

\(\Leftrightarrow\left(x^2-1\right)+\left(10x-10\right)=0\Leftrightarrow\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+11\right)=0\)

\(\orbr{\begin{cases}x-1=0\\x++11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}}\)( Thõa mãn ) 

Vậy ...............

17 tháng 8 2020

1) \(8x^3+12x^2+6x+1=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\)

\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=-27\)

2) \(8x^3-12x+6x-1=\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1^2-1^3\)

\(=\left(2x-1\right)^3=\left(2.-\frac{1}{2}-1\right)^3=-8\)

3)\(\left(1-2x\right)^2-\left(3x+1\right)^2=\left(1-2x+3x+1\right)\left(1-2x-3x-1\right)\)

\(=\left(x+2\right)\left(-5x\right)=\left(-2+2\right).\left(-5.-2\right)=0\)

4) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=\left(2x-3y\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)

\(=\left(2x\right)^3-\left(3y\right)^3=\left(2.-\frac{1}{2}\right)^3-\left(3.-\frac{1}{3}\right)^3=-1-\left(-1\right)=0\)

17 tháng 8 2020

1) Ta có : \(8x^3+12x^2+6x+1\)

\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=\left(-3\right)^3=-27\)

b) \(8x^3-12x^2+6x-1\)

\(=\left(2x-1\right)^3=\left[2.\left(-\frac{1}{2}\right)-1\right]^3=-8\)

mk ko bít sorry

57876987674

24: 

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)

\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)

=>(x+10)(x-2)=0

=>x=-10 hoặc x=2

25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)

\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)

\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)

\(\Leftrightarrow x+5=0\)

hay x=-5

13 tháng 5 2016

\(\frac{2}{x^2-4x+3}+\frac{2}{x^2-8x+15}+\frac{2}{x^2-12x+35}=-\frac{1}{2}\)(x khác 1;3;5;7)

<=>\(\frac{2}{x^2-3x-x+3}+\frac{2}{x^2-5x-3x+15}+\frac{2}{x^2-5x-7x+35}=-\frac{1}{2}\)

<=>\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{2}{\left(x-3\right)\left(x-5\right)}+\frac{2}{\left(x-5\right)\left(x-7\right)}=-\frac{1}{2}\)

<=>\(\frac{1}{x-3}-\frac{1}{x-1}+\frac{1}{x-5}-\frac{1}{x-3}+\frac{1}{x-7}-\frac{1}{x-5}=-\frac{1}{2}\)

<=>\(\frac{1}{x-7}-\frac{1}{x-1}=-\frac{1}{2}\)

<=>\(2x-2-2x+14=-x^2+8x-7\)

<=>\(x^2-8x+19=0\)

<=>(x-4)2+3=0(vô lí)

Vậy PT vô nghiệm

13 tháng 9 2021

\(a,=\left(x+4\right)^2\\ b,=\left(x-6\right)^2\\ c,=-\left(4x^2-4x+1\right)=-\left(2x-1\right)^2\\ d,=\left(x-1\right)^3\)

13 tháng 9 2021

Bạn có thể ghi cách giải chi tiết được ko