K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Ta có công thức sau

\(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)

Ta sẽ chứng minh nó bằng quy nạp

Với n=1 ta có VT=12=1, VP=\(\frac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}=1\) => (1) đúng với n=1

Giả sử đúng với n=k, ta sẽ chứng minh đúng với k+1

\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

Ta lại có \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Vậy theo nguyên tắc quy nạp ta có Đpcm

=>B=22 + 32 + ... + 502 + 512

=>B+12=12+22 + 32 + ... + 502 + 512

=>B+1=\(\frac{51\left(51+1\right)\left(2\cdot51+1\right)}{6}=45526\)

=>B=45526-1=45525

 

 

10 tháng 8 2016

- Công thức của tuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii :D :D :D

9 tháng 8 2016

có cần làm ko? bài của cậu mới đăng lên ấy

9 tháng 8 2016

(2+3+4+...+50+51)^2

rùi tự mần nghe

5 tháng 7 2015

\(a.A=2+2+2^2+2^3+2^4+...+2^{99}\)

\(A=2+\left(2+2^2+2^3+2^4+...2^{99}\right)\)

\(\Rightarrow A-2=2+2^2+2^3+2^4+...+2^{99}\)

\(2.\left(A-2\right)=2^2+2^3+2^4+2^5+...+2^{100}\)

\(2.\left(A-2\right)-\left(A-2\right)=2^{100}-2=2.2^{99}\)

\(A=2.2^{99}+2\)

Câu b bạn tự giải nhé

6 tháng 7 2015

  \(A=2+2^2+2^3+2^4+......+2^{98}+2^{99}\)

\(2A=2^2+2^3+2^4+2^5+.....+2^{99}+2^{100}\)

\(\Rightarrow2A-A=A=2^{100}-2\)

 

\(B=1+5+5^2+5^3+........+5^{50}+5^{51}\)

\(5B=5+5^2+5^3+5^4+.....+5^{51}+5^{52}\)

\(5B-B=4B=5^{52}-1\)

\(\Rightarrow B=\frac{5^{52}-1}{4}\)

27 tháng 11 2017

1/ S=1.2+2.3+3.4+...+50.51

=> 3S=1.2.3+2.3.3+3.4.3+...+50.51.3

=> 3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+50.51(52-49)

=> 3S=(1.2.3+2.3.4+3.4.5+...+50.51.52)-(1.2.3+2.3.4+...+49.50.51)

=> 3S=50.51.52 => S=50.51.52:3=44200

Đáp số: 44200

2/ A=12+22+32+42+...+502 = 1(2-1)+2(3-1)+3(4-1)+...+50(51-1)

=> A=(1.2+2.3+3.4+...+50.51)-(1+2+3+...+50)

=> A=S-\(\frac{50\left(50+1\right)}{2}\)=44200-1275

A=42925

Đáp số: 42925

a, Ta có : S = 1*2 + 2*3 +3*4 + .... + 50*51

3S=1*2*3+2*3*3+3*4*3+....+50*51*3

3S=1*2*3+2*3*(4-1)+3*4*(5-2)+....+50*51*(52-49)

3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+50*51*52-49*50*51

3S=50*51*52

S=(50*51*52)/3=442000

b,Ta có   12 + 22 + 32 + ....... + n2=\(\frac{n\cdot\left(n+1\right)\cdot\left(2n+1\right)}{6}\)

=>   12 + 22 + 32 + ....... + 502\(\frac{50\cdot\left(50+1\right)\cdot\left(2\cdot50+1\right)}{6}\)

=\(\frac{50\cdot51\cdot101}{6}\)= 42925

14 tháng 10 2017

A= 22+22+23+24+..........+250

2A= 23+23+24+25+..........+251

A= 22+22+23+24+..........+250

2A - A= 2+ 251 - 22 - 22

A= 8+251-4 -4

A= 251

a) A = 251

b) A + 3 - 251=251+3-251

                A   = 3

14 tháng 10 2017

nhầm hi