Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1
b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
c,Ta thấy
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(.....\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)
\(\left(2^3.9^4+9^3.45\right):\left(9^2.10-9^2\right)\)
\(=\left(2^3.9^4+9^3.\left(9.5\right)\right):\left[9^2.\left(10-1\right)\right]\)
\(=\left[2^3.9^4+9^4.5\right]:\left(9^2.9\right)\)
\(=9^4.\left(2^3+5\right):9^3\)
\(=\left(2^3+5\right).\left(9^4:9^3\right)\)
\(=\left(8+5\right).9\)
\(=13.9\)
\(=117\)
(23 . 94 + 93 . 45) : (92 . 10 - 92)
= (23 . 94 + 94 . 5): [92 . (10 - 1)]
= 94 (23 + 5) : [92 . (10 - 1)]
= 94 . 13 : 93
= 9 . 13
= 117.
Vậy.....
Lời giải:
$B=1+2+2^2+2^3+...+2^9$
$2B=2+2^2+2^3+2^4+...+2^{10}$
$2B-B=(2+2^2+2^3+2^4+...+2^{10})-(1+2+2^2+2^3+...+2^9)$
$B=2^{10}-1$