\(\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...........+\dfrac{10}{14...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

\(A=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{140}\)

\(=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)

\(=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)

\(3A=5\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-...-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(=5\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)

\(=5.\dfrac{3}{14}=\dfrac{15}{14}\)

\(\Rightarrow A=\dfrac{15}{14}:3=\dfrac{15}{14}.\dfrac{1}{3}=\dfrac{5}{14}.\)

Vậy \(A=\dfrac{5}{14}.\)

10 tháng 8 2018

mình ko hiểu chỗ 3A là gì?

Bạn giải thích giúp mình với

7 tháng 4 2017

\(M=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)

\(M=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)

\(M=\dfrac{5}{4\cdot7}+\dfrac{5}{7\cdot10}+\dfrac{5}{10\cdot13}+...+\dfrac{5}{25\cdot28}\)

\(M=\dfrac{5}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+...+\dfrac{3}{25\cdot28}\right)\)

\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{3}\cdot\dfrac{3}{14}=\dfrac{5}{14}\)

17 tháng 6 2017

bằng 5/14

1 tháng 3 2017

\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

\(\Rightarrow B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(\Rightarrow\frac{3B}{5}=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\)

\(\Rightarrow\frac{3B}{5}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\)

\(\Rightarrow\frac{3B}{5}=\frac{1}{4}-\frac{1}{28}\)

\(\Rightarrow\frac{3B}{5}=\frac{3}{14}\)

\(\Rightarrow B=\frac{3}{14}.\frac{5}{3}\)

\(\Rightarrow B=\frac{5}{14}\)

Vậy \(B=\frac{5}{14}\)

18 tháng 7 2017

D= 1/2. (1/25-1/27 +1/27-1/29+...+1/73-1/75)

= 1/2. (1/25 -1/75)

=1/2 . 2/75= 1/75

18 tháng 7 2017

D = \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+...+\dfrac{1}{73.75}\)

2D = 2( \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+...+\dfrac{1}{73.75}\) )

= \(\dfrac{2}{25.27}+\dfrac{2}{27.29}+...+\dfrac{2}{73.75}\)

= \(\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)

= \(\dfrac{1}{25}-\dfrac{1}{75}\)

= \(\dfrac{2}{75}\)

16 tháng 4 2017

Câu 1:

Ta có: \(\dfrac{x-4}{y-3}=\dfrac{4}{3}\)

=> \(3.\left(x-4\right)=4.\left(y-3\right)\)

=>\(3x-12=4y-12\)

=>\(3x=4y\) (1)

Ta có: \(x-y=5\)

=> \(y=y+5\) Thay vào (1) ta có:

\(3.\left(y+5\right)=4.\)y

=>\(3y+15=4y\)

=> \(15=4y-3y\)

=> 15 = y

=> y =15

ta có: x = y +5

=> x = 15 +5

=> x =20

16 tháng 4 2017

Câu 2:

\(B=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)

\(B=\dfrac{5}{28}+\dfrac{6}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)

\(B=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)

\(B=5,\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(3B=5.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\right)\)

\(3B=5.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(3B=5.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)

\(3B=5.\dfrac{3}{14}\)

\(B=\dfrac{15}{14}:3=\dfrac{5}{14}\)

Câu 3:

38 - (|x+10|+13) = \(\left(-6\right)^{20}:\left(9^9.4^{10}\right)\)

=> \(38-\left(\left|x+10\right|+13\right)=\left(2.3\right)_{ }^{20}:\)\(\left[\left(3^2\right)^9.\left(2^2\right)^4\right]\)

=>\(38-\left(\left|x+10\right|+13\right)=2^{20}.3^{20}:\left(3^{18}.2^{20}\right)\)

=> \(38-\left(\left|x+10\right|+13\right)=\dfrac{3^{20}.2^{20}}{3^{18}.2^{20}}\)

=> \(38-\left(\left|x+10\right|+13\right)=9\)

=> |x +10| + 13 = 38 -9

=> |x+10| +13 = 29

=> |x+10| = 29 -13

=> |x+10| = 16

\(\Rightarrow\left[{}\begin{matrix}x+10=16\\x+10=-16\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-26\end{matrix}\right.\)

\(=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)

\(=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)

\(=\dfrac{5}{3}.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\right)\)

\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(=\dfrac{5}{3}.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{14}\)

 

29 tháng 4 2023

5/14

b: \(B=2013+\dfrac{2013}{3}+\dfrac{2013}{6}+\dfrac{2013}{10}+\dfrac{2013}{15}\)

\(=2013\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}\right)\)

\(=4026\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)

\(=4026\cdot\dfrac{5}{6}=3355\)

26 tháng 3 2017

B = 10/56 + 10/140 + 10/260 + ...+ 10/1400      

B= 5/28 + 5/70 +.....+10/700 
= 5/(4.7)+5/(7.10)+....5/(25.28) 
3B= 5( 1/4 - 1/7 +1/7-1/10+......+1/25-1/28) 
3B = 5 (1/4-1/28) 
3B=15/14 
B = 15/14 : 3 

B = 5/14

9 tháng 8 2016

S = 10/56 + 10/140 + 10/260 + ....... + 10/1400

S = 5/28 + 5/70 + 5/130 + 5/700

3S/5 = 3/4 x 7 + 3/7 x 10 + 30/10 x 13 + ....... + 3/25 x 28

3S/5 = 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ........ + 1/25 - 1/28

3S/5 = 1/4 - 1/28

3S/5 = 3/14

S = 3/14 x 5/3

S = 5/14

Vậy S = 5/14

9 tháng 8 2016

\(S=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+\frac{10}{1400}\)

\(S=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(S=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)

\(S=5.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)

\(S=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{25.28}\right)\)

\(S=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(S=5.\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(S=5.\frac{3}{14}=\frac{15}{14}\)

Vậy \(S=\frac{15}{14}\)