K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

\(A=\dfrac{5}{3.5}+\dfrac{5}{5.7}+\dfrac{5}{7.9}+...+\dfrac{5}{97.99}\)

\(A=\dfrac{5}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\right)\)

Nhận xét:

\(\dfrac{2}{3.5}=\dfrac{1}{3}-\dfrac{1}{5};\dfrac{2}{5.7}=\dfrac{1}{5}-\dfrac{1}{7};...;\dfrac{2}{97.99}=\dfrac{1}{97}-\dfrac{1}{99}\)

\(\Rightarrow A=\dfrac{5}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(\Rightarrow A=\dfrac{5}{2}\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)

\(\Rightarrow A=\dfrac{5}{2}.\dfrac{32}{99}=\dfrac{80}{99}\)

Vậy A=\(\dfrac{80}{99}\)

21 tháng 3 2017

A= 5/2. (2/3.5+2/5.7+2/7.9+...+/97.99) A= 5/2. ( 1/3-1/5+1/5-1/7+1/7-1/9+...+/97+1/99) A= 5/2. ( 1/3-1/99) A= 5/2.32/99 A=80/99 B=5/2. (2/1.3+2/3.5+2/5.7+...+2/59.61) B= 5/2. (1-1/3+1/3-1/5+1/5-1/7+...+1/59-1/61) B= 5/2. (1- 1/61) B = 5/2. 60/61 B = 300/122=150/61

2 tháng 6 2017

a, \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{101-99}{99.101}\)

\(=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{101}{99.101}-\dfrac{99}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)

b, \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\)

\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\right)\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{500}{202}=\dfrac{250}{101}\)

2 tháng 6 2017

a)

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+..............+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...............+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

b)

\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+......................+\dfrac{5}{99.101}\)

\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...............+\dfrac{2}{99.101}\right)\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+............+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}\)

a, \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}=\dfrac{100}{101}\)

26 tháng 5 2017

b, \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+...+\dfrac{5}{99.101}\)

\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}\)

Vậy...

28 tháng 3 2017

\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+.....+\dfrac{2}{97.99}\)


Ta thấy:\(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{1.3 }\)
\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{3.5}\)
............\(\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{2}{97.99}\)
\(\Rightarrow A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+..........+\dfrac{1}{97}-\dfrac{1}{99}\) =\(\dfrac{1}{1}-\dfrac{1}{99}\)

=\(\dfrac{99}{99}-\dfrac{1}{99}\)

=\(\dfrac{98}{99}\)
Vậy A=\(\dfrac{98}{99}\)

28 tháng 3 2017

A = \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

A = \(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

A = \(1-\dfrac{1}{99}\)

A = \(\dfrac{98}{99}\)

27 tháng 6 2017

a) Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in Z\right)\)

\(\Rightarrow B=\dfrac{5^{12}+2}{5^{13}+2}< 1\)

\(B< \dfrac{5^{12}+2+48}{5^{13}+2+48}\Rightarrow B< \dfrac{5^{12}+50}{5^{13}+50}\Rightarrow B< \dfrac{5^2\left(5^{10}+2\right)}{5^2\left(5^{11}+2\right)}\Rightarrow B< \dfrac{5^{10}+2}{5^{11}+2}=A\)\(B< A\)

27 tháng 6 2017

bạn ơi thế còn phần b thì sao? Mong bạn có câu trả lời sớm tớ cảm ơn bạn nhiều lắm

23 tháng 5 2017

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)

\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)

23 tháng 5 2017

\(a,\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

23 tháng 9 2017

Cách tính tổng dãy số cách đều:

\(\dfrac{\text{( Số cuối + Số đầu ) x Số số hạng }}{2}\)

Cách tính số số hạng của dãy số cách đều:

\(\dfrac{\text{( Số cuối - Số đầu ) }}{\text{Khoảng cách}}+1\)

Lưu ý: Khoảng cách là khoảng cách giữa hai số hạng liên tiếp

23 tháng 9 2017

a) Số số hạng của A: \(\left(2015-1\right):1+1=2015\) (số)

\(A=\dfrac{\left(1+2015\right).2015}{2}=2031120\)

b) Số số hạng của B: \(\left(1017-1\right):2+1=509\) (số)

\(B=\dfrac{\left(1+1017\right).509}{2}=259081\)

c) Số số hạng của C: \(\left(2014-2\right):2+1=1007\) (số)

\(C=\dfrac{\left(2+2014\right).1007}{2}=1015056\)

d) Số số hạng của D: \(\left(2008-1\right):3+1=670\) (số)

\(D=\dfrac{\left(1+2008\right).670}{2}=673015\)

24 tháng 4 2017

\(\left(x-2\right)\left(x-4\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2< 0\\x-4>0\end{matrix}\right.=>4< x< 2\left(1\right)\\\left\{{}\begin{matrix}x-2>0\\x-4< 0\end{matrix}\right.=>2< x< 4\left(2\right)}\end{matrix}\right.\)(1 ) vô lý=> loại

=> (x-2).(x-4)<0 <=> 2<x<4

b. ta có\(x^2+1>0\forall x\)

=>(x2 -1).(x2+1)<0 <=> (x2 -1)<0 <=> x2<1

<=> -1<x<1

câu c bạn làm tương tự

12 tháng 5 2017

Ta có

M = \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

M = \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

M = \(\dfrac{1}{3}-\dfrac{1}{99}\)

M = \(\dfrac{32}{99}\)

Vậy M = \(\dfrac{32}{99}\)

12 tháng 5 2017

\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

\(M=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(M=\dfrac{1}{3}-\dfrac{1}{99}\)

\(M=\dfrac{32}{99}\)

3 tháng 7 2017

1. Tìm GTNN

a) \(B=\left|3x+5\right|\)

\(\Rightarrow B=\left|3x+5\right|\ge0\)

Vậy GTNN của \(B=\left|3x+5\right|\)\(=0\) khi x=\(\dfrac{-5}{3}\)

b) \(C=4.\left|3+2x\right|+1\)

\(\Rightarrow\)\(C=4.\left|3+2x\right|+1\)\(\ge1\)

Vậy GTNN của \(C=4.\left|3+2x\right|+1\)\(=1\) khi x=\(\dfrac{-3}{2}\)

3 tháng 7 2017

\(B=\left|3x+5\right|\)

\(\left|3x+5\right|\ge0\)

\(B_{MIN}\)

\(\Rightarrow B_{MIN}=0\)khi \(\left|3x+5\right|=0\)

\(C=4\left|3+2x\right|+1\)

\(\left|3+2x\right|\ge0\Rightarrow4\left|3+2x\right|\ge0\)

\(C_{MIN}\Rightarrow\left|3+2x\right|=0\Rightarrow4\left|3+2x\right|=0\)

\(C_{MIN}=0+1=1\)

\(C_{MIN}=1\)khi \(4\left|3+2x\right|=0\)