Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
:\(A=1+\frac{1}{2}\times\left(1+2\right)+\frac{1}{3}\times\left(1+2+3\right)+...+\frac{1}{16}\times\left(1+2+3+...+16\right)\)
\(\Rightarrow A=1+\frac{1}{2}\times\frac{2\times3}{2}+\frac{1}{3}\times\frac{3\times4}{2}+...+\frac{1}{16}\times\frac{16\times17}{2}\)
\(\Rightarrow A=1+\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}\)
\(\Rightarrow A=\frac{1}{2}\times\left(2+3+4+...+17\right)\)
\(\Rightarrow A=\frac{1}{2}\times152=76\)
Vậy A=76
Câu 17:
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2006}\right).\left(1+\frac{1}{2007}\right)\)
=\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2007}{2006}.\frac{2008}{2007}\)
\(=\frac{2008}{2}=1004\)
Câu 18:
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2006}\right).\left(1-\frac{1}{2007}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2005}{2006}.\frac{2006}{2007}\)
\(=\frac{1}{2007}\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{15}\left(1+2+...+15\right)+\frac{1}{16}\left(1+2+3+...+16\right)\)
\(A=1+\frac{1}{2}\cdot3+\frac{1}{3}\cdot6+\frac{1}{4}\cdot10+...+\frac{1}{15}+\left[\frac{\left(1+15\right)\cdot15}{2}\right]+\frac{1}{16}\cdot\left[\frac{\left(16+1\right).16}{2}\right]\)
\(A=1+\frac{3}{2}+2+\frac{5}{2}+....+\frac{1}{15}\cdot120+\frac{1}{16}\cdot136\)
\(A=1+\frac{3}{2}+2+\frac{5}{2}+...+8+\frac{17}{2}\)
\(A=\left(1+2+...+8\right)+\left(\frac{3}{2}+\frac{5}{2}+...+\frac{17}{2}\right)\)
Đặt \(B=1+2+...+8\)
\(C=\frac{3}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(B=1+2+...+8\)
\(\text{Ta thấy tổng B là dãy các số hạng liên tiếp từ 1 đến 8 }\)
\(\Rightarrow\text{số số hạng của B là}:\)\(\left(8-1\right)\div1+1=8\left(sh\right)\)
\(\text{Tổng B là }:\)\(\frac{\left(1+8\right)\cdot8}{2}=36\)
\(C=\frac{3}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(\Rightarrow C=\frac{3+5+...+17}{2}\)
Đặt \(D=3+5+...+17\)
\(\text{số số hạng của D là}:\)\(\left(17-3\right)\div2+1=8\left(sh\right)\)
\(\text{Tổng D là }:\)\(\frac{\left(3+17\right)\cdot8}{2}=80\)
\(\Rightarrow C=\frac{80}{2}=40\)
Thay B và C vào biểu thức A , ta được
\(A=36+40=76\)
Vậy A = 76
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)\)\(+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
\(\Rightarrow A=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{16}.\frac{16.17}{2}\)
\(\Rightarrow A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(\Rightarrow A=\frac{\frac{17.18}{2}-1}{2}=76.\)
Vậy \(A=76.\)