K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275

sao dể zữ vậy

19 tháng 2 2017

Chú ý: \(a^2-1=\left(a-1\right)\left(a+1\right)\)

Áp dụng:

\(A=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}...\frac{49.51}{50^2}=\frac{2.3.4^2.5^2...49^2.50.51}{3^2.4^2.5^2...50^2}=\frac{2.51}{3.50}=\frac{51}{75}\)

15 tháng 3 2017

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :

\(\Rightarrow\)  \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)

Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

         

24 tháng 6 2020

 P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\) 

P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)

P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)

P\(=\frac{1.51}{50.2}=\frac{51}{100}\)

8 tháng 8 2016

13/50+9/100+41/100+12/50

=(13/50+12/50)+(9/100+41/100)

=1/2+1/2

=1

23 tháng 8 2016

11) Ta có:

\(\frac{120-0,5.40.5.0,2.20.0,25-20}{1+5+9+...+33+37}\)

\(=\frac{120-\left(0,5.40\right).\left(5.0,2\right).\left(20.0,25\right)-20}{1+5+9+...+33+37}\)

\(=\frac{120-20.1.5-20}{1+5+9+...+33+37}\)

\(=\frac{120-100-20}{1+5+9+...+33+37}\)

\(=\frac{0}{1+5+9+...+33+37}=0\)

 

14 tháng 8 2017

Đặt \(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{210}\)

  \(\frac{1}{2}B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\)

  \(\frac{1}{2}B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)

   \(\frac{1}{2}B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)

   \(\frac{1}{2}B=\frac{1}{2}-\frac{1}{21}\)

 \(\Rightarrow B=\frac{\frac{1}{2}-\frac{1}{21}}{\frac{1}{2}}=\frac{19}{21}\)

14 tháng 8 2017

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+50}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{\left(1+50\right).50}{2}}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{1275}\)

\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{2550}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{50.51}\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)=2\cdot\frac{49}{102}=\frac{49}{51}\)

19 tháng 5 2018

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{15}\left(1+2+...+15\right)+\frac{1}{16}\left(1+2+3+...+16\right)\)

\(A=1+\frac{1}{2}\cdot3+\frac{1}{3}\cdot6+\frac{1}{4}\cdot10+...+\frac{1}{15}+\left[\frac{\left(1+15\right)\cdot15}{2}\right]+\frac{1}{16}\cdot\left[\frac{\left(16+1\right).16}{2}\right]\)

\(A=1+\frac{3}{2}+2+\frac{5}{2}+....+\frac{1}{15}\cdot120+\frac{1}{16}\cdot136\)

\(A=1+\frac{3}{2}+2+\frac{5}{2}+...+8+\frac{17}{2}\)

\(A=\left(1+2+...+8\right)+\left(\frac{3}{2}+\frac{5}{2}+...+\frac{17}{2}\right)\)

Đặt \(B=1+2+...+8\)

      \(C=\frac{3}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(B=1+2+...+8\)

\(\text{Ta thấy tổng B là dãy các số hạng liên tiếp từ 1 đến 8 }\)

\(\Rightarrow\text{số số hạng của B là}:\)\(\left(8-1\right)\div1+1=8\left(sh\right)\)

                    \(\text{Tổng B là }:\)\(\frac{\left(1+8\right)\cdot8}{2}=36\)

\(C=\frac{3}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(\Rightarrow C=\frac{3+5+...+17}{2}\)

Đặt \(D=3+5+...+17\)

\(\text{số số hạng của D là}:\)\(\left(17-3\right)\div2+1=8\left(sh\right)\)

               \(\text{Tổng D là }:\)\(\frac{\left(3+17\right)\cdot8}{2}=80\)

\(\Rightarrow C=\frac{80}{2}=40\)

Thay B và C vào biểu thức A , ta được 

\(A=36+40=76\)

Vậy A = 76 

18 tháng 5 2018

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)\)\(+...+\frac{1}{16}\left(1+2+3+...+16\right)\)

\(\Rightarrow A=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{16}.\frac{16.17}{2}\)

\(\Rightarrow A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(\Rightarrow A=\frac{\frac{17.18}{2}-1}{2}=76.\)

Vậy \(A=76.\)

19 tháng 8 2017

k biết

19 tháng 8 2017

Mấy bạn có thể giúp mình không ạ ?