
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right).n.\left(n+1\right)\)
\(4B=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)
\(B=\frac{\left(n-1\right).n.\left(n+1\right)\left(n+2\right)}{4}\)
Tham khảo nhé~
Ta có: \(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=4.\left[1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right)n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-2\right).\)\(\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
\(\Leftrightarrow B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)
Vậy \(B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)

\(10^{26}\) và \(9^{10}\)
Có: \(10>9\)
\(26>10\)
\(\Rightarrow10^{26}>9^{10}\)
C2: \(10^{26}=10^{10}.10^{16}\)
Vì: \(10^{10}>9^{10}\)
\(\Rightarrow10^{10}.10^{16}>9^{10}\)
\(\Rightarrow10^{26}>9^{10}\)
C1 10 ^ 26 = 100 ^ 25 = (100^5)^5 = 10000000000 ^ 5 > 81 ^ 5 = 9 ^10 => 10 ^ 26 > 9 ^ 10
C2 10 ^ 26 > 10^10 > 9^ 10 => 10 ^ 26 > 9 ^ 10

Bài làm
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\left(1-\frac{1}{100}\right)\)
=\(\left(\frac{100}{100}-\frac{1}{100}\right)\)
=\(\frac{99}{100}\)
Chúc bạn học tốt

*với ab>ac
vì trung tuyến bằng 1/2 cạnh huyền nên am=bm=cm=1/2 bc=41.=>bc=82.
Theo định lý pytago, mh^2=am^2-ah^2.
=>mh=9.
=>bh=32.
Theo định lý Pytago =>ab^2=ah^2+bh^2 =>ab=8\(\sqrt{41}\).
tương tự ta có ac=\(10\sqrt{41}\)

Góc A1 + A2 = Goc B + C.
Do Am là tia phân giác ngoài tại đỉnh A nên A1 = A2.
=> Tam giác cân ABC tai A nên góc B = C.
Suy ra : Góc A1 + A1 = Góc C + C
=> Góc A1 = C mà hai góc này nằm ở vị trí so le trong
Do đó : Am // BC.
tam giác ABC có: góc B+ góc C góc BAC = 1800
=> 500 + 500 + góc BAC = 1800
=> góc BAC = 1800 - (500+500) = 800
góc BAn = 1800 - góc BAC = 1800 - 800 = 1000 (do góc BAn là góc ngoài tam giác)
=> góc mAB = \(\frac{BAn}{2}=\frac{100^0}{2}=50^0\) (do Am là p/g của góc BAn)
=> góc mAB = góc ABC = 500 mà chúng ở vị trí SLT => Am//BC (đccm)
chúc pn học tốt!! 458437687486826765276843975849784596783685843576235
\(74\left(-41\right)-41.26=\left(74+26\right)\left(-41\right)=100.\left(-41\right)=-4100\)
\(74.\left(-41\right)-41.26\)
\(=-\left(74.41-41.26\right)\)(Đặt dấu trừ bên ngoài thì tất cả hạng tử ở trong đều mang dấu cộng)
\(=-\left[41.\left(74+26\right)\right]\)
\(=-\left(41.100\right)\)
\(=-4100\)