Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2018^2-2017.2019\)
\(=2018^2-\left(2018-1\right)\left(2018+1\right)\)
\(=2018^2-\left(2018^2-1\right)=1\)
\(56^2+56.88+44^2\)
\(=56^2+2.56.44+44^2\)
\(=\left(56+44\right)^2\)
\(=100^2=10000\)
\(\frac{2018^3+1}{2018^2-2017}\)
\(=\frac{\left(2018+1\right)\left(2018^2-2018+1\right)}{2018^2-2017}\)
\(=\frac{2019\left(2018^2-2017\right)}{2018^2-2017}=2019\)
Chúc bạn học tốt.
Ta có : B = 202 - 192 + 182 - 172 + ..... + 22 - 12
=> B = (20 - 19)(20 + 19) + (18 - 17)(18 + 17) + ..... + (2 - 1)(2 + 1)
=> B = 39 + 35 + 31 + ..... + 3
Số số hạng của dãy trên là :
(39 - 3) : 4 + 1 = 10 (số)
Tổng B là :
(39 + 3) x 10 : 2 = 210
Vậy B = 210
Ta có : \(C=\left(15^4-1\right)\left(15^4+1\right)-3^8.5^8\)
\(\Rightarrow C=\left(15^4\right)^2-1-15^8\)
\(\Rightarrow C=15^8-1-15^8\)
=> C = -1
Vậy C = - 1
a, 1001^2=1001.1001=1001.(1000+1)=1001.1000+1001=1001000+1001=...
b,999^2=999.999=999.(1000-1)=999.1000-999=999000-999=...
c, 22,9.30,1=22,9.(30+0,1)=22,9.30+22,9.0,1=22,9.10.3+2,29=229.3+2,29=687+2,29=689,29 (tui khong biet giau mu len phai viet vay thong cam nhung van dung day)
Bài 1:
\(A=23^2+46\cdot37+37^2=23^2+2\cdot23\cdot37+37^2=\left(23+37\right)^2=60^2=3600\)
\(B=27^2-44\cdot27+22^2=27^2-2\cdot27\cdot22+22^2=\left(27-22\right)^2=5^2=25\)
Bài 2:
\(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)
Vì: \(\left(x-2\right)^2\ge0\) với mọi x
=> \(\left(x-2\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x=2
\(A=23^2+2.23.37+37^2=\left(23+37\right)^2=60^2=3600\)
\(B=27^2-2.27.22+22^2=\left(27-22\right)^2=5^2=25\)
\(A=x^2-4x+5=\left(x-2\right)^2+1\ge1\)
=> A min=1 khi x=2
\(205^2-95^2=\)
\(=\left(205-95\right)\left(205+95\right)\)
\(=200.300\)
\(=60000\)
\(36^2-14^2=\)
\(=\left(36-14\right)\left(36+14\right)\)
\(=22.50\)
\(=1100\)
\(205^2-95^2=\left(205-95\right)\left(205+95\right)=110.300=33000\)
\(36^2-14^2=\left(36-14\right)\left(36+14\right)=22.50=1100\)
\(97^2-3^2=\left(97-3\right)\left(97+3\right)=94.100=9400\)
Bài 2 :
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
- 652 = 4225
- 752 = 5625.
Bài 4 :
a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.
b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)2
=502 =2500
Ta có:
\(\frac{2}{x^2+2x}+\frac{2}{x^2+6x+8}+\frac{2}{x^2+10x+24}+\frac{1}{x+6}\)
= \(\frac{2}{x\left(x+2\right)}+\frac{2}{x^2+4x+2x+8}+\frac{2}{x^2+4x+6x+24}+\frac{1}{x+6}\)
= \(\frac{2}{x\left(x+2\right)}+\frac{2}{x\left(x+4\right)+2\left(x+4\right)}+\frac{2}{x\left(x+4\right)+4\left(x+6\right)}+\frac{1}{x+6}\)
= \(\frac{2}{x\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}+\frac{1}{x+6}\)
= \(\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}+\frac{1}{x+6}\)
= \(\frac{1}{x}\)
\(a^2+2a+1\)
\(\left(x+2\right)^2\)
\(51^2=\left(50+1\right)^2=50^2+2.50.1+1=2500+100+1=2601\)
\(301^2=300^2+2.300.1+1^2=90000+600+1=90601\)
a) 1012=(100+1)2=1002+2.50.2+12=10000+200+1=10201
b)1992=(200-1)2=2002 -2.200.1+12=40000-400+1=39601
c) 47.53=(50-3)(50+3)=502-32=2500-9=2491
a) 1012 =(100+1)2 =10000+1=10001
b) 1992 =(199+1)2 =2002 =40000
c) 47.53=(40+7 .50+3)=20000+10=20010
`556^2 - 553 . 559 `
`= 556^2 - (556 - 3) . (556 + 3) `
`= 556^2 - (556^2 - 3^2)`
`= 556^2 - 556^2 + 9`
`= 0 + 9`
= 9
`456^2 + 456 . 88 + 44^2`
`= 456^2 + 456 . 88 + 44^2`
`= 456^2 + 2 .456 . 4 + 44^2`
`= (456 + 44)^2`
`= 500^2`
`= 250000`
--------------------------------
Áp dụng các HDT sau nhé:
`(a+b)^2 = a^2 + 2ab + b^2`
`a^2 - b^2 = (a+b)(a-b)`