Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1b. Ta thấy \(225-15^2=0\)
Mọi số nhân với 0 đều = 0
=> \(2017^0=1\)
2.
\(A=\dfrac{2.5^{22}-9.5^{21}}{25^{10}}:\dfrac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\dfrac{5^{21}\left(2.5-9\right)}{5^{20}}:\dfrac{5.7^{14}\left(3.7-19\right)}{7^{15}\left(7+3\right)}=5.1:\dfrac{5.7^{14}.2}{7^{15}.10}=5:\dfrac{1}{7}=35\)
Đúng ạk
Năm nay đứa nào cũng thấp điểm hết ròi =.= hazz
Cái chỗ : \(3^{37}\left(9.-25\right)\) phải là \(3^{37}.9.\left(-25\right)=3^{37}.\left(-225\right)\) nhé
=.=
Ta có:
\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{516}\right)^{25}\)
\(\left(\frac{1}{3}\right)^{100}=\left[\left(\frac{1}{3}\right)^4\right]^{25}=\left(\frac{1}{81}\right)^{25}\)
\(\frac{1}{516}< \frac{1}{81}\Rightarrow\left(\frac{1}{516}\right)^{25}< \left(\frac{1}{81}\right)^{25}\Rightarrow\left(\frac{1}{2}\right)^{225}< \left(\frac{1}{3}\right)^{100}\)
a) \(\sqrt{125}+\sqrt{\left(-14\right)^2}-\sqrt{225}=5\sqrt{5}+14-15=-1+5\sqrt{5}\)
b) \(\sqrt{\frac{9}{49}}.\sqrt{\left(\frac{-1}{3}\right)^2}+\sqrt{\frac{4}{9}}=\frac{3}{7}.\frac{1}{3}+\frac{2}{3}=\frac{17}{21}\)
M=\(\left(\dfrac{55}{3}:15+\dfrac{26}{3}.\dfrac{7}{2}\right):\left[\left(\dfrac{37}{3}+\dfrac{62}{7}\right)-\dfrac{7}{18}\right]:\dfrac{1704}{445}\)
M=\(\left(\dfrac{11}{9}+\dfrac{91}{3}\right):\left[\dfrac{445}{21}-\dfrac{7}{18}\right]:\dfrac{1704}{445}\)
M=\(\dfrac{284}{9}:\dfrac{2621}{126}:\dfrac{1704}{445}\)
M=\(\dfrac{3115}{7863}\)
a: \(=0.5\cdot10-\dfrac{1}{7}+15=20-\dfrac{1}{7}=\dfrac{139}{7}\)
b: \(=6\cdot\dfrac{-2}{3}+12\cdot\dfrac{4}{9}+18\cdot\dfrac{-8}{27}\)
\(=-4+\dfrac{16}{3}-\dfrac{16}{3}=-4\)
c: \(=\left(\dfrac{5}{2}+\dfrac{3}{8}-\dfrac{5}{8}+\dfrac{2}{3}\right):\left(\dfrac{17}{2}+\dfrac{49}{4}-\dfrac{17}{8}+\dfrac{34}{15}\right)\)
\(=\dfrac{35}{12}:\dfrac{2507}{120}=\dfrac{350}{2507}\)
\(2017\cdot \left(225-1^2\right)\left(225-2^2\right)....\left(225-15^2\right).....\left(225-56^2\right)\)
\(=2017\cdot224\cdot221\cdot\cdot\cdot\cdot\cdot0\cdot\cdot\cdot\left(-2911\right)\)
\(=0\)