K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

\(\frac{1993.1991-1}{1992+1990.1993}\)

\(=\frac{1993.1990+1993-1}{1993.1990+1992}=\frac{1993.1990+1992}{1993.1990+1992}=1\)

nha ><

16 tháng 6 2019

Trả lời

1993.1991-1/1992+1990.1993

=1993.1990+1993-1/1993.1990+1992

=1993.1990+1992/1993.1990+1992

=1.

20 tháng 1 2015

(1-2-3+4)+....+(1989-1990-1991+1992)+3985=3985

14 tháng 12 2017

=1994

14 tháng 12 2017

=1992-1991-1993=1-1993=-1992

12 tháng 7 2016

1993 x (1994 + 1992) = 7944098

2 tháng 3 2018

Có :

A = 10 - 9/10^1991+1

B = 10 - 9/10^1992+1

Vì 10^1991+1 < 10^1992+1 => 9/10^1991+1 > 9/10^1992+1

=> A < B

Tk mk nha

15 tháng 2 2018

A= 10^1992+1/10^1991+1

10/A= 10^1992+1/10^1990+10

=1-9/10^1992+10

B=10^1993+1/10^1993+1

10/B=10^1993+1/10^1993+10

=1-9/10^1993+10

Vi 9/10^99+10>9/10^1993+10

nen A>B

6 tháng 3 2017

\(\frac{A}{10}=\frac{10^{1992}+1}{10^{1992}+10}=\frac{\left(10^{1992}+10\right)-9}{10^{1992}+10}=1-\frac{9}{10^{1992}+10}\)

\(\frac{B}{10}=\frac{10^{1993}+1}{10^{1993}+10}=\frac{\left(10^{1993}+10\right)-9}{10^{1993}+10}=1-\frac{9}{10^{1993}+10}\)

Vì \(10^{1992}+10< 10^{1993}+10\) nên \(1+\frac{9}{10^{1993}+10}>1+\frac{9}{10^{1993}+10}\)

Do đó \(A>B\)

6 tháng 3 2017

lấy máy tính mà tính!