Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1\dfrac{1}{15}\times1\dfrac{1}{16}\times1\dfrac{1}{17}\times...\times1\dfrac{1}{2006}\\ =\dfrac{16}{15}\times\dfrac{17}{16}\times\dfrac{18}{17}\times...\times\dfrac{2007}{2006}\\ =\dfrac{2007}{15}\\ =\dfrac{669}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)=(3/8+10/16)+(7/12+10/24)
=1+1=2
c)=(4/6+14/6)+(7/13+19/13)+(17/9+1/9)
=3+2+2=7
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{2004}{2005}=1-\frac{1}{2005}\);\(\frac{2005}{2006}=1-\frac{1}{2006}\)
Vì \(\frac{1}{2005}>\frac{1}{2006}\)=>\(1-\frac{1}{2005}< 1-\frac{1}{2006}\)=>\(\frac{2004}{2005}< \frac{2005}{2006}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 2006 x 2004 - \(\frac{2}{1995}\) + 2004 x 2005 = 8038043,999
b, 2006 x 125 + \(\frac{1000}{126}\) x 2006 - 1006 = 265664,6349
c, A = 1991 x 1999
=> A = ( 1995 - 4 ) x ( 1995 + 4 )
A = 1995 x ( 1995 + 4 ) - 4 x ( 1995 + 4 )
A = 1995 x 1995 + 1995 x 4 - ( 4 x 1995 + 4 x 4 )
A = 1995 x 1995 - 4 x 4
mà B = 1995 x 1995
Vậy A < B
d, Gọi giá trị biểu thức là C
C = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
C x 2 = \(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}\)
C x 2 = \(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}\)
Vậy C x 2 - C = \(\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)\)
C = \(\frac{2}{3}-\frac{1}{96}\) ( vì phân số nào có ở số bị trừ cũng có ở số trừ thì trừ hết rồi nên không còn )
C = \(\frac{21}{32}\)
A=1991x1999=(1995-4)1999=1995x1999-4x1999
B=1995x1995=1995x(1999-4)=1995x1999-1995x4>1995x1999-4x1999=A
vậy A<B
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có:\(\frac{2005}{2004}-1=\frac{1}{2004}\)
\(\frac{14}{13}-1=\frac{1}{13}\)
Vì \(\frac{1}{2004}<\frac{1}{13}\)nên phân số \(\frac{2005}{2004}<\frac{14}{13}\)
\(\frac{a}{x-1}>\frac{a}{x+1}\) vì x-1<x+1
2005 phần 2004 > 14 phần 13
a phần x - 1 > a phần x + 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1\frac{1}{15}\cdot1\frac{1}{16}\cdot1\frac{1}{17}\cdot...\cdot1\frac{1}{2006}\)
\(=\frac{16}{15}\cdot\frac{17}{16}\cdot\frac{18}{17}\cdot...\cdot\frac{2007}{2006}\)
\(=\frac{16\cdot17\cdot18\cdot...\cdot2007}{15\cdot16\cdot17\cdot...\cdot2006}\)
\(=\frac{2007}{15}\)
1\(\frac{1}{15}\) x 1\(\frac{1}{16}\) x 1\(\frac{1}{17}\) x ............ x 1\(\frac{1}{2016}\)
= \(\frac{16}{15}\)x \(\frac{17}{16}\)x \(\frac{18}{17}\)x ................. x \(\frac{2017}{2016}\)
= \(\frac{1}{15}\)x 2017
= \(\frac{2017}{15}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(E=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2006}\right)\left(1-\frac{1}{2007}\right)\)
\(E=\frac{1}{2}.\frac{2}{3}....\frac{2005}{2006}.\frac{2006}{2007}\)
\(E=\frac{1.2.3.4...2005.2006}{2.3.4.5....2006.2007}\)
\(E=\frac{1}{2007}\)
\(1\dfrac{1}{3}\times1\dfrac{1}{4}\times1\dfrac{1}{5}\times...\times1\dfrac{1}{2006}\)
\(=\dfrac{4}{3}\times\dfrac{5}{4}\times\dfrac{6}{5}\times...\times\dfrac{2007}{2006}\)
\(=\dfrac{2007}{3}\)
2007/3